2,2,2-tribromoethanol phase-shifts the circadian rhythm of the liver clock in Per2::Luciferase knockin mice: Lack of dependence on anesthetic activity

Yuji Kubo, Yu Tahara, Akiko Hirao, Shigenobu Shibata

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Comprehensive gene expression profiling in mice in response to the inhalation of sevoflurane has revealed that circadian clock gene expression is affected strongly in the liver, heart, lung, and kidney, in this order, but moderately in the spleen and slightly in the brain. Therefore, we examined whether the administration of general anesthetics at different times of the day induces phase shifts of the liver clock in Per2::Luciferase knockin mice. One to 4 days of intraperitoneal injection of 2,2,2-tribromoethanol (240 mg/kg, anesthetic time 60 min) or 2,2,2-trichloroethanol (240 mg/kg, 60 min), common anesthetics in veterinary surgery, caused phase delays when injected during the daytime and phase advances when injected during the nighttime. Inhalation administration of isoflurane for 30 or 60 min during the daytime did not induce a phase delay. Injection of propofol (300 mg/kg, 17 min) during the daytime induced an insignificant phase delay of the Per2 bioluminescence rhythm. Injection of 2,2,2-tribromoethanol did not induce a phase shift in the suprachiasmatic nucleus, the main oscillator, or in behavioral locomotor rhythms, suggesting that 2,2,2-tribromoethanol induced phase shifts of the liver clock independent of the main suprachiasmatic clock. The expression of clock genes, such as Bmal1 and Clock, in mouse liver was decreased strongly 1 and 4 h after a single injection of 2,2,2- tribromoethanol. These results demonstrate that 2,2,2-tribromoethanol or 2,2,2-trichloroethanol produce phase shifts of the peripheral clock, independent of anesthetic activity. These anesthetics may cause circadian rhythm disorders in peripheral organs when administered as general anesthetics several times during the day.

Original languageEnglish
Pages (from-to)698-705
Number of pages8
JournalJournal of Pharmacology and Experimental Therapeutics
Volume340
Issue number3
DOIs
Publication statusPublished - 2012 Mar

Fingerprint

Circadian Rhythm
Luciferases
Anesthetics
Liver
General Anesthetics
Injections
Veterinary Surgery
Chronobiology Disorders
Inhalation Administration
Gene Expression
Circadian Clocks
Suprachiasmatic Nucleus
Isoflurane
Gene Expression Profiling
Propofol
Intraperitoneal Injections
Inhalation
Spleen
tribromoethanol
Kidney

ASJC Scopus subject areas

  • Pharmacology
  • Molecular Medicine

Cite this

@article{88705d0d11f14979ba01a16cd4613af8,
title = "2,2,2-tribromoethanol phase-shifts the circadian rhythm of the liver clock in Per2::Luciferase knockin mice: Lack of dependence on anesthetic activity",
abstract = "Comprehensive gene expression profiling in mice in response to the inhalation of sevoflurane has revealed that circadian clock gene expression is affected strongly in the liver, heart, lung, and kidney, in this order, but moderately in the spleen and slightly in the brain. Therefore, we examined whether the administration of general anesthetics at different times of the day induces phase shifts of the liver clock in Per2::Luciferase knockin mice. One to 4 days of intraperitoneal injection of 2,2,2-tribromoethanol (240 mg/kg, anesthetic time 60 min) or 2,2,2-trichloroethanol (240 mg/kg, 60 min), common anesthetics in veterinary surgery, caused phase delays when injected during the daytime and phase advances when injected during the nighttime. Inhalation administration of isoflurane for 30 or 60 min during the daytime did not induce a phase delay. Injection of propofol (300 mg/kg, 17 min) during the daytime induced an insignificant phase delay of the Per2 bioluminescence rhythm. Injection of 2,2,2-tribromoethanol did not induce a phase shift in the suprachiasmatic nucleus, the main oscillator, or in behavioral locomotor rhythms, suggesting that 2,2,2-tribromoethanol induced phase shifts of the liver clock independent of the main suprachiasmatic clock. The expression of clock genes, such as Bmal1 and Clock, in mouse liver was decreased strongly 1 and 4 h after a single injection of 2,2,2- tribromoethanol. These results demonstrate that 2,2,2-tribromoethanol or 2,2,2-trichloroethanol produce phase shifts of the peripheral clock, independent of anesthetic activity. These anesthetics may cause circadian rhythm disorders in peripheral organs when administered as general anesthetics several times during the day.",
author = "Yuji Kubo and Yu Tahara and Akiko Hirao and Shigenobu Shibata",
year = "2012",
month = "3",
doi = "10.1124/jpet.111.188615",
language = "English",
volume = "340",
pages = "698--705",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - 2,2,2-tribromoethanol phase-shifts the circadian rhythm of the liver clock in Per2::Luciferase knockin mice: Lack of dependence on anesthetic activity

AU - Kubo, Yuji

AU - Tahara, Yu

AU - Hirao, Akiko

AU - Shibata, Shigenobu

PY - 2012/3

Y1 - 2012/3

N2 - Comprehensive gene expression profiling in mice in response to the inhalation of sevoflurane has revealed that circadian clock gene expression is affected strongly in the liver, heart, lung, and kidney, in this order, but moderately in the spleen and slightly in the brain. Therefore, we examined whether the administration of general anesthetics at different times of the day induces phase shifts of the liver clock in Per2::Luciferase knockin mice. One to 4 days of intraperitoneal injection of 2,2,2-tribromoethanol (240 mg/kg, anesthetic time 60 min) or 2,2,2-trichloroethanol (240 mg/kg, 60 min), common anesthetics in veterinary surgery, caused phase delays when injected during the daytime and phase advances when injected during the nighttime. Inhalation administration of isoflurane for 30 or 60 min during the daytime did not induce a phase delay. Injection of propofol (300 mg/kg, 17 min) during the daytime induced an insignificant phase delay of the Per2 bioluminescence rhythm. Injection of 2,2,2-tribromoethanol did not induce a phase shift in the suprachiasmatic nucleus, the main oscillator, or in behavioral locomotor rhythms, suggesting that 2,2,2-tribromoethanol induced phase shifts of the liver clock independent of the main suprachiasmatic clock. The expression of clock genes, such as Bmal1 and Clock, in mouse liver was decreased strongly 1 and 4 h after a single injection of 2,2,2- tribromoethanol. These results demonstrate that 2,2,2-tribromoethanol or 2,2,2-trichloroethanol produce phase shifts of the peripheral clock, independent of anesthetic activity. These anesthetics may cause circadian rhythm disorders in peripheral organs when administered as general anesthetics several times during the day.

AB - Comprehensive gene expression profiling in mice in response to the inhalation of sevoflurane has revealed that circadian clock gene expression is affected strongly in the liver, heart, lung, and kidney, in this order, but moderately in the spleen and slightly in the brain. Therefore, we examined whether the administration of general anesthetics at different times of the day induces phase shifts of the liver clock in Per2::Luciferase knockin mice. One to 4 days of intraperitoneal injection of 2,2,2-tribromoethanol (240 mg/kg, anesthetic time 60 min) or 2,2,2-trichloroethanol (240 mg/kg, 60 min), common anesthetics in veterinary surgery, caused phase delays when injected during the daytime and phase advances when injected during the nighttime. Inhalation administration of isoflurane for 30 or 60 min during the daytime did not induce a phase delay. Injection of propofol (300 mg/kg, 17 min) during the daytime induced an insignificant phase delay of the Per2 bioluminescence rhythm. Injection of 2,2,2-tribromoethanol did not induce a phase shift in the suprachiasmatic nucleus, the main oscillator, or in behavioral locomotor rhythms, suggesting that 2,2,2-tribromoethanol induced phase shifts of the liver clock independent of the main suprachiasmatic clock. The expression of clock genes, such as Bmal1 and Clock, in mouse liver was decreased strongly 1 and 4 h after a single injection of 2,2,2- tribromoethanol. These results demonstrate that 2,2,2-tribromoethanol or 2,2,2-trichloroethanol produce phase shifts of the peripheral clock, independent of anesthetic activity. These anesthetics may cause circadian rhythm disorders in peripheral organs when administered as general anesthetics several times during the day.

UR - http://www.scopus.com/inward/record.url?scp=84857342368&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857342368&partnerID=8YFLogxK

U2 - 10.1124/jpet.111.188615

DO - 10.1124/jpet.111.188615

M3 - Article

C2 - 22171092

AN - SCOPUS:84857342368

VL - 340

SP - 698

EP - 705

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 3

ER -