### Abstract

In this paper, \ve extend the circuit partitioning algorithm which we have proposed for multi-FPGA systems and present a new algorithm in which the delay of each critical signal path is within a specified upper bound imposed on it. The core of the presented algorithm is recursive bipartitioning of a circuit. The bipartitioning procedure consists of three stages: 0) detection of critical paths; 1) bipartitioning of a set of primary inputs and outputs; and 2) bipartitioning of a set of logic-blocks. In 0), the algorithm computes the lower bounds of delays for paths with path delay constraints and detects the critical paths based on the difference between the lower and upper bound dynamically in every bipartitioning procedure. The delays of the critical paths are reduced with higher priority. In 1), the algorithm attempts to assign the primary inputs and outputs on each critical path to one chip so that the critical path does not cross between chips. Finally in 2), the algorithm not only decreases the number of crossings between chips but also assigns the logic-blocks on each critical path to one chip by exploiting a network flow technique. The algorithm has been implemented and applied to MCNC PARTITIONING 93 benchmark circuits. The experimental results demonstrate that it resolves almost all path delay constraints with maintaining the maximum number of required I/O blocks per chip small compared with conventional algorithms.

Original language | English |
---|---|

Pages (from-to) | 494-505 |

Number of pages | 12 |

Journal | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |

Volume | E80-A |

Issue number | 3 |

Publication status | Published - 1997 |

### Fingerprint

### Keywords

- Circuit partitioning
- FPGA
- Logic-block replication
- Multi-fpga system
- Path delay

### ASJC Scopus subject areas

- Electrical and Electronic Engineering
- Hardware and Architecture
- Information Systems

### Cite this

**A circuit partitioning algorithm with path delay constraints for multi-FPGA systems.** / Togawa, Nozomu.

Research output: Contribution to journal › Article

}

TY - JOUR

T1 - A circuit partitioning algorithm with path delay constraints for multi-FPGA systems

AU - Togawa, Nozomu

PY - 1997

Y1 - 1997

N2 - In this paper, \ve extend the circuit partitioning algorithm which we have proposed for multi-FPGA systems and present a new algorithm in which the delay of each critical signal path is within a specified upper bound imposed on it. The core of the presented algorithm is recursive bipartitioning of a circuit. The bipartitioning procedure consists of three stages: 0) detection of critical paths; 1) bipartitioning of a set of primary inputs and outputs; and 2) bipartitioning of a set of logic-blocks. In 0), the algorithm computes the lower bounds of delays for paths with path delay constraints and detects the critical paths based on the difference between the lower and upper bound dynamically in every bipartitioning procedure. The delays of the critical paths are reduced with higher priority. In 1), the algorithm attempts to assign the primary inputs and outputs on each critical path to one chip so that the critical path does not cross between chips. Finally in 2), the algorithm not only decreases the number of crossings between chips but also assigns the logic-blocks on each critical path to one chip by exploiting a network flow technique. The algorithm has been implemented and applied to MCNC PARTITIONING 93 benchmark circuits. The experimental results demonstrate that it resolves almost all path delay constraints with maintaining the maximum number of required I/O blocks per chip small compared with conventional algorithms.

AB - In this paper, \ve extend the circuit partitioning algorithm which we have proposed for multi-FPGA systems and present a new algorithm in which the delay of each critical signal path is within a specified upper bound imposed on it. The core of the presented algorithm is recursive bipartitioning of a circuit. The bipartitioning procedure consists of three stages: 0) detection of critical paths; 1) bipartitioning of a set of primary inputs and outputs; and 2) bipartitioning of a set of logic-blocks. In 0), the algorithm computes the lower bounds of delays for paths with path delay constraints and detects the critical paths based on the difference between the lower and upper bound dynamically in every bipartitioning procedure. The delays of the critical paths are reduced with higher priority. In 1), the algorithm attempts to assign the primary inputs and outputs on each critical path to one chip so that the critical path does not cross between chips. Finally in 2), the algorithm not only decreases the number of crossings between chips but also assigns the logic-blocks on each critical path to one chip by exploiting a network flow technique. The algorithm has been implemented and applied to MCNC PARTITIONING 93 benchmark circuits. The experimental results demonstrate that it resolves almost all path delay constraints with maintaining the maximum number of required I/O blocks per chip small compared with conventional algorithms.

KW - Circuit partitioning

KW - FPGA

KW - Logic-block replication

KW - Multi-fpga system

KW - Path delay

UR - http://www.scopus.com/inward/record.url?scp=0031100066&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031100066&partnerID=8YFLogxK

M3 - Article

VL - E80-A

SP - 494

EP - 505

JO - IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

JF - IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

SN - 0916-8508

IS - 3

ER -