A comprehensive study of sanding rate from a gas field: From reservoir to completion, production, and surface facilities

Keith Han, Gang Shepstone, Iwan Harmawan, Ufuk Er, Hasni Jusoh, Lim Sue Lin, Dave Pringle, Rani Koya, Stephen Carney, Larry Barker, Nobuo Morita, Euripides Papamichos, Pierre Cerasi, Colin Sayers, Juliane Heiland, Mike Bruno, Julia Diessl

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

An offshore gas field has been producing sand for a few years. Sand production has been closely monitored through acoustic flowline devices and a sand-collection system installed on the platforms. Observation of sand production has triggered evaluation of whether to install surface desanders or to complete future wells with downhole sand control. This evaluation requires a prediction of sanding rate over the reservoir life. The possibility of providing downhole sand control on existing wells was also evaluated in separate studies. Predicting sanding rate, particularly for gas fields, has been historically challenging, mainly because of the sporadic nature of sand production, inadequate quantification of fundamental physics, and lack of representative laboratory tests and reliable field calibration. To tackle these challenges, four studies have been designed and executed: (1) the development of a reliable log-based rock-strength estimate, (2) the prediction of sanding rate over the reservoir life for a conservative well condition, (3) the evaluation of sand-particle transport from the reservoir to the surface facilities, and (4) the estimate of potential erosion of platform facilities. The sanding-rate prediction is based on extensive laboratory tests of four carefully selected whole cores with gas and water flow. It then has been validated by field-monitoring data from an acoustic flowline device on each producer and a sand-collection system on the platforms. The studies have provided a prediction of (1) future sand production, (2) how much of the produced sand will be seen at the surface (and, therefore, how much of it will fall into the rathole), (3) how fast various components of the surface facility will erode over the field life, and (4) what will be the optimal completion strategy for sand control should it become necessary. They have provided input to an integrated evaluation of completion design, reservoir management, platform configuration, and field economics.

Original languageEnglish
Pages (from-to)463-481
Number of pages19
JournalSPE Journal
Volume16
Issue number2
Publication statusPublished - 2011 Jun

    Fingerprint

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Geotechnical Engineering and Engineering Geology

Cite this

Han, K., Shepstone, G., Harmawan, I., Er, U., Jusoh, H., Sue Lin, L., Pringle, D., Koya, R., Carney, S., Barker, L., Morita, N., Papamichos, E., Cerasi, P., Sayers, C., Heiland, J., Bruno, M., & Diessl, J. (2011). A comprehensive study of sanding rate from a gas field: From reservoir to completion, production, and surface facilities. SPE Journal, 16(2), 463-481.