A new method proposed to explore the feline's paw bones of contributing most to landing pattern recognition when landed under different constraints

Datao Xu, Huiyu Zhou, Qiaolin Zhang, Julien S. Baker, Ukadike C. Ugbolue, Zsolt Radak, Xin Ma, Fekete Gusztav, Meizi Wang, Yaodong Gu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Felines are generally acknowledged to have natural athletic ability, especially in jumping and landing. The adage “felines have nine lives” seems applicable when we consider its ability to land safely from heights. Traditional post-processing of finite element analysis (FEA) is usually based on stress distribution trend and maximum stress values, which is often related to the smoothness and morphological characteristics of the finite element model and cannot be used to comprehensively and deeply explore the mechanical mechanism of the bone. Machine learning methods that focus on feature pattern variable analysis have been gradually applied in the field of biomechanics. Therefore, this study investigated the cat forelimb biomechanical characteristics when landing from different heights using FEA and feature engineering techniques for post-processing of FEA. The results suggested that the stress distribution feature of the second, fourth metacarpal, the second, third proximal phalanx are the features that contribute most to landing pattern recognition when cats landed under different constraints. With increments in landing altitude, the variations in landing pattern differences may be a response of the cat's forelimb by adjusting the musculoskeletal structure to reduce the risk of injury with a more optimal landing strategy. The combination of feature engineering techniques can effectively identify the bone's features that contribute most to pattern recognition under different constraints, which is conducive to the grasp of the optimal feature that can reveal intrinsic properties in the field of biomechanics.

Original languageEnglish
Article number1011357
JournalFrontiers in Veterinary Science
Volume9
DOIs
Publication statusPublished - 2022 Oct 10

Keywords

  • animal biomechanics
  • cat paws
  • feature engineering techniques
  • feline landing
  • metaheuristic optimization algorithms
  • post-processing of finite element analysis

ASJC Scopus subject areas

  • veterinary(all)

Fingerprint

Dive into the research topics of 'A new method proposed to explore the feline's paw bones of contributing most to landing pattern recognition when landed under different constraints'. Together they form a unique fingerprint.

Cite this