A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): Identification, expression and binding activity

H. Yin, K. Ukena, T. Ubuka, Kazuyoshi Tsutsui

Research output: Contribution to journalArticle

154 Citations (Scopus)

Abstract

We recently identified a novel hypothalamic dodecapeptide inhibiting gonadotropin release in the Japanese quail (Coturnix japonica). This novel peptide was therefore named gonadotropin-inhibitory hormone (GnIH). The GnIH precursor encoded one GnIH and two GnIH-related peptides (GnIH-RP-1 and GnIH-RP-2) that shared the same C-terminal motif, Leu-Pro-Xaa-Arg-Phe-NH2 (Xaa=Leu or Gln; LPXRF-amide peptides). Identification of the receptor for GnIH is crucial to elucidate the mode of action of GnIH. We therefore identified the receptor for GnIH in the quail diencephalon and characterized its expression and binding activity. We first cloned a cDNA encoding a putative GnIH receptor by a combination of 3′ and 5′ rapid amplification of cDNA ends (RACE) using PCR primers designed from the sequence for the receptor for rat RF-amide-related peptide (RFRP), an orthologous peptide of GnIH. Hydrophobic analysis revealed that the putative GnIH receptor possessed seven transmembrane domains, indicating a new member of the G protein-coupled receptor superfamily. The crude membrane fraction of COS-7 cells transfected with the putative GnIH receptor cDNA specifically bound to GnIH and GnIH-RPs in a concentration-dependent manner. Scatchard plot analysis of the binding showed that the identified GnIH receptor possessed a single class of high-affinity binding sites (Kd=0.752 nM, Bmax=24.8 fmol/mg protein). Southern blotting analysis of reverse transcriptase-mediated PCR products revealed the expression of GnIH receptor mRNA in the pituitary gland and several brain regions including diencephalon in the quail. These results suggest that GnIH acts directly on the pituitary via GnIH receptor to inhibit gonadotropin release. GnIH may also act on the hypothalamus to inhibit gonadotropin-releasing hormone release.

Original languageEnglish
Pages (from-to)257-266
Number of pages10
JournalJournal of Endocrinology
Volume184
Issue number1
DOIs
Publication statusPublished - 2005 Jan
Externally publishedYes

Fingerprint

Coturnix
G-Protein-Coupled Receptors
Gonadotropins
Hormones
Gonadotropin Receptors
Diencephalon
Peptides
Quail
Complementary DNA
Amides
leucylproline
Pituitary Gonadotropins

ASJC Scopus subject areas

  • Endocrinology

Cite this

@article{b345722c40794989a72f4ad3361494d0,
title = "A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): Identification, expression and binding activity",
abstract = "We recently identified a novel hypothalamic dodecapeptide inhibiting gonadotropin release in the Japanese quail (Coturnix japonica). This novel peptide was therefore named gonadotropin-inhibitory hormone (GnIH). The GnIH precursor encoded one GnIH and two GnIH-related peptides (GnIH-RP-1 and GnIH-RP-2) that shared the same C-terminal motif, Leu-Pro-Xaa-Arg-Phe-NH2 (Xaa=Leu or Gln; LPXRF-amide peptides). Identification of the receptor for GnIH is crucial to elucidate the mode of action of GnIH. We therefore identified the receptor for GnIH in the quail diencephalon and characterized its expression and binding activity. We first cloned a cDNA encoding a putative GnIH receptor by a combination of 3′ and 5′ rapid amplification of cDNA ends (RACE) using PCR primers designed from the sequence for the receptor for rat RF-amide-related peptide (RFRP), an orthologous peptide of GnIH. Hydrophobic analysis revealed that the putative GnIH receptor possessed seven transmembrane domains, indicating a new member of the G protein-coupled receptor superfamily. The crude membrane fraction of COS-7 cells transfected with the putative GnIH receptor cDNA specifically bound to GnIH and GnIH-RPs in a concentration-dependent manner. Scatchard plot analysis of the binding showed that the identified GnIH receptor possessed a single class of high-affinity binding sites (Kd=0.752 nM, Bmax=24.8 fmol/mg protein). Southern blotting analysis of reverse transcriptase-mediated PCR products revealed the expression of GnIH receptor mRNA in the pituitary gland and several brain regions including diencephalon in the quail. These results suggest that GnIH acts directly on the pituitary via GnIH receptor to inhibit gonadotropin release. GnIH may also act on the hypothalamus to inhibit gonadotropin-releasing hormone release.",
author = "H. Yin and K. Ukena and T. Ubuka and Kazuyoshi Tsutsui",
year = "2005",
month = "1",
doi = "10.1677/joe.1.05926",
language = "English",
volume = "184",
pages = "257--266",
journal = "Journal of Endocrinology",
issn = "0022-0795",
publisher = "Society for Endocrinology",
number = "1",

}

TY - JOUR

T1 - A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica)

T2 - Identification, expression and binding activity

AU - Yin, H.

AU - Ukena, K.

AU - Ubuka, T.

AU - Tsutsui, Kazuyoshi

PY - 2005/1

Y1 - 2005/1

N2 - We recently identified a novel hypothalamic dodecapeptide inhibiting gonadotropin release in the Japanese quail (Coturnix japonica). This novel peptide was therefore named gonadotropin-inhibitory hormone (GnIH). The GnIH precursor encoded one GnIH and two GnIH-related peptides (GnIH-RP-1 and GnIH-RP-2) that shared the same C-terminal motif, Leu-Pro-Xaa-Arg-Phe-NH2 (Xaa=Leu or Gln; LPXRF-amide peptides). Identification of the receptor for GnIH is crucial to elucidate the mode of action of GnIH. We therefore identified the receptor for GnIH in the quail diencephalon and characterized its expression and binding activity. We first cloned a cDNA encoding a putative GnIH receptor by a combination of 3′ and 5′ rapid amplification of cDNA ends (RACE) using PCR primers designed from the sequence for the receptor for rat RF-amide-related peptide (RFRP), an orthologous peptide of GnIH. Hydrophobic analysis revealed that the putative GnIH receptor possessed seven transmembrane domains, indicating a new member of the G protein-coupled receptor superfamily. The crude membrane fraction of COS-7 cells transfected with the putative GnIH receptor cDNA specifically bound to GnIH and GnIH-RPs in a concentration-dependent manner. Scatchard plot analysis of the binding showed that the identified GnIH receptor possessed a single class of high-affinity binding sites (Kd=0.752 nM, Bmax=24.8 fmol/mg protein). Southern blotting analysis of reverse transcriptase-mediated PCR products revealed the expression of GnIH receptor mRNA in the pituitary gland and several brain regions including diencephalon in the quail. These results suggest that GnIH acts directly on the pituitary via GnIH receptor to inhibit gonadotropin release. GnIH may also act on the hypothalamus to inhibit gonadotropin-releasing hormone release.

AB - We recently identified a novel hypothalamic dodecapeptide inhibiting gonadotropin release in the Japanese quail (Coturnix japonica). This novel peptide was therefore named gonadotropin-inhibitory hormone (GnIH). The GnIH precursor encoded one GnIH and two GnIH-related peptides (GnIH-RP-1 and GnIH-RP-2) that shared the same C-terminal motif, Leu-Pro-Xaa-Arg-Phe-NH2 (Xaa=Leu or Gln; LPXRF-amide peptides). Identification of the receptor for GnIH is crucial to elucidate the mode of action of GnIH. We therefore identified the receptor for GnIH in the quail diencephalon and characterized its expression and binding activity. We first cloned a cDNA encoding a putative GnIH receptor by a combination of 3′ and 5′ rapid amplification of cDNA ends (RACE) using PCR primers designed from the sequence for the receptor for rat RF-amide-related peptide (RFRP), an orthologous peptide of GnIH. Hydrophobic analysis revealed that the putative GnIH receptor possessed seven transmembrane domains, indicating a new member of the G protein-coupled receptor superfamily. The crude membrane fraction of COS-7 cells transfected with the putative GnIH receptor cDNA specifically bound to GnIH and GnIH-RPs in a concentration-dependent manner. Scatchard plot analysis of the binding showed that the identified GnIH receptor possessed a single class of high-affinity binding sites (Kd=0.752 nM, Bmax=24.8 fmol/mg protein). Southern blotting analysis of reverse transcriptase-mediated PCR products revealed the expression of GnIH receptor mRNA in the pituitary gland and several brain regions including diencephalon in the quail. These results suggest that GnIH acts directly on the pituitary via GnIH receptor to inhibit gonadotropin release. GnIH may also act on the hypothalamus to inhibit gonadotropin-releasing hormone release.

UR - http://www.scopus.com/inward/record.url?scp=13444252383&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=13444252383&partnerID=8YFLogxK

U2 - 10.1677/joe.1.05926

DO - 10.1677/joe.1.05926

M3 - Article

C2 - 15642802

AN - SCOPUS:13444252383

VL - 184

SP - 257

EP - 266

JO - Journal of Endocrinology

JF - Journal of Endocrinology

SN - 0022-0795

IS - 1

ER -