A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---

Akira Kikusato, Jin Kusaka, Yasuhiro Daisho

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2. Part 1 deals with the description of the numerical model and the fundamental characteristics of instantaneous temperature swings in the combustion chamber wall. The numerical model is developed by utilizing GT-POWER combined with three sub-models; a non-dimensional two-zone combustion model, an autoignition model in the unburned gas and an instantaneous heat transfer model in the combustion chamber wall. The combustion model considers the flame speeds affected by the in-cylinder conditions. The Shell model was utilized to predict autoignition. The heat transfer model in the combustion chamber wall calculates the instantaneous one-dimensional thermal conductivity, and further predicts wall surface and inside temperatures. The fluctuation range of calculated temperature swings is reasonably similar to measured data obtained in previous studies.

Original languageEnglish
Pages (from-to)96-105
Number of pages10
JournalSAE International Journal of Engines
Volume7
Issue number1
DOIs
Publication statusPublished - 2014

Fingerprint

Combustion knock
Combustion chambers
Electric sparks
Engines
Computer simulation
Heat losses
Numerical models
Heat transfer
Gas cylinders
Hot Temperature
Temperature
Thermal insulation
Engine cylinders
Thermal conductivity

ASJC Scopus subject areas

  • Fuel Technology
  • Automotive Engineering

Cite this

@article{5df76c7ab86c48bfa2693ed4557ec0a4,
title = "A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---",
abstract = "The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2. Part 1 deals with the description of the numerical model and the fundamental characteristics of instantaneous temperature swings in the combustion chamber wall. The numerical model is developed by utilizing GT-POWER combined with three sub-models; a non-dimensional two-zone combustion model, an autoignition model in the unburned gas and an instantaneous heat transfer model in the combustion chamber wall. The combustion model considers the flame speeds affected by the in-cylinder conditions. The Shell model was utilized to predict autoignition. The heat transfer model in the combustion chamber wall calculates the instantaneous one-dimensional thermal conductivity, and further predicts wall surface and inside temperatures. The fluctuation range of calculated temperature swings is reasonably similar to measured data obtained in previous studies.",
author = "Akira Kikusato and Jin Kusaka and Yasuhiro Daisho",
year = "2014",
doi = "10.4271/2014-01-1073",
language = "English",
volume = "7",
pages = "96--105",
journal = "SAE International Journal of Engines",
issn = "1946-3936",
publisher = "SAE International",
number = "1",

}

TY - JOUR

T1 - A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1

T2 - Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---

AU - Kikusato, Akira

AU - Kusaka, Jin

AU - Daisho, Yasuhiro

PY - 2014

Y1 - 2014

N2 - The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2. Part 1 deals with the description of the numerical model and the fundamental characteristics of instantaneous temperature swings in the combustion chamber wall. The numerical model is developed by utilizing GT-POWER combined with three sub-models; a non-dimensional two-zone combustion model, an autoignition model in the unburned gas and an instantaneous heat transfer model in the combustion chamber wall. The combustion model considers the flame speeds affected by the in-cylinder conditions. The Shell model was utilized to predict autoignition. The heat transfer model in the combustion chamber wall calculates the instantaneous one-dimensional thermal conductivity, and further predicts wall surface and inside temperatures. The fluctuation range of calculated temperature swings is reasonably similar to measured data obtained in previous studies.

AB - The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2. Part 1 deals with the description of the numerical model and the fundamental characteristics of instantaneous temperature swings in the combustion chamber wall. The numerical model is developed by utilizing GT-POWER combined with three sub-models; a non-dimensional two-zone combustion model, an autoignition model in the unburned gas and an instantaneous heat transfer model in the combustion chamber wall. The combustion model considers the flame speeds affected by the in-cylinder conditions. The Shell model was utilized to predict autoignition. The heat transfer model in the combustion chamber wall calculates the instantaneous one-dimensional thermal conductivity, and further predicts wall surface and inside temperatures. The fluctuation range of calculated temperature swings is reasonably similar to measured data obtained in previous studies.

UR - http://www.scopus.com/inward/record.url?scp=84903376933&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903376933&partnerID=8YFLogxK

U2 - 10.4271/2014-01-1073

DO - 10.4271/2014-01-1073

M3 - Article

AN - SCOPUS:84903376933

VL - 7

SP - 96

EP - 105

JO - SAE International Journal of Engines

JF - SAE International Journal of Engines

SN - 1946-3936

IS - 1

ER -