A random time-varying particle swarm optimization for the real time location systems

Hui Zhu, Yuji Tanabe, Takaaki Baba

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of applications. This paper presents a random time variable PSO algorithm, called the PSO-RTVIWAC, introducing random time-varying inertia weight and acceleration coefficients to significantly improve the performance of the original algorithms. The PSO-RTVIWAC method originates from the random inertia weight (PSO-RANDIW) and time-varying acceleration coefficients (PSO-TVAC) methods. Through the efficient control of search and convergence to the global optimum solution, the PSO-RTVIWAC method is capable of tracking and optimizing the position evaluate in the highly nonlinear real-time location systems (RTLS). Experimental results are compared with three previous PSO approaches from the literatures, showing that the new optimizer significantly outperforms previous approaches. Simply employing a few particles and iterations, a reasonable good positioning accuracy is obtained with the PSO-RTVIWAC method. This property makes the PSO-RTVIWAC method become more attractive since the computation efficiency is improved considerably, i.e. the computation can be completed in an extremely short time, which is crucial for the RTLS. By implementing a hardware design of PSO-RTVIWAC, the computations can simultaneously be performed using hardware to reduce the processing time. Due to a small number of particles and iterations, the hardware resource is saved and the area cost is reduced in the FPGA implementation. An improvement of positioning accuracy is observed with PSO-RTVIWAC method, compared with Taylor Series Expansion (TSE) and Genetic Algorithm (GA). Our experiments on the PSO-RTVIWAC to track and optimize the position evaluate have demonstrated that it is especially effective in dealing with optimization functions in the nonlinear dynamic environments.

Original languageEnglish
JournalIEEJ Transactions on Electronics, Information and Systems
Volume128
Issue number12
DOIs
Publication statusPublished - 2008

Fingerprint

Particle swarm optimization (PSO)
Hardware
Taylor series
Field programmable gate arrays (FPGA)
Genetic algorithms
Processing
Costs
Experiments

Keywords

  • Acceleration coefficients
  • Inertia weight
  • Particle swarm
  • Real-time location system
  • Time of arrival

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

A random time-varying particle swarm optimization for the real time location systems. / Zhu, Hui; Tanabe, Yuji; Baba, Takaaki.

In: IEEJ Transactions on Electronics, Information and Systems, Vol. 128, No. 12, 2008.

Research output: Contribution to journalArticle

@article{3d23bc6c69a94743b6e53fc245db45f3,
title = "A random time-varying particle swarm optimization for the real time location systems",
abstract = "The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of applications. This paper presents a random time variable PSO algorithm, called the PSO-RTVIWAC, introducing random time-varying inertia weight and acceleration coefficients to significantly improve the performance of the original algorithms. The PSO-RTVIWAC method originates from the random inertia weight (PSO-RANDIW) and time-varying acceleration coefficients (PSO-TVAC) methods. Through the efficient control of search and convergence to the global optimum solution, the PSO-RTVIWAC method is capable of tracking and optimizing the position evaluate in the highly nonlinear real-time location systems (RTLS). Experimental results are compared with three previous PSO approaches from the literatures, showing that the new optimizer significantly outperforms previous approaches. Simply employing a few particles and iterations, a reasonable good positioning accuracy is obtained with the PSO-RTVIWAC method. This property makes the PSO-RTVIWAC method become more attractive since the computation efficiency is improved considerably, i.e. the computation can be completed in an extremely short time, which is crucial for the RTLS. By implementing a hardware design of PSO-RTVIWAC, the computations can simultaneously be performed using hardware to reduce the processing time. Due to a small number of particles and iterations, the hardware resource is saved and the area cost is reduced in the FPGA implementation. An improvement of positioning accuracy is observed with PSO-RTVIWAC method, compared with Taylor Series Expansion (TSE) and Genetic Algorithm (GA). Our experiments on the PSO-RTVIWAC to track and optimize the position evaluate have demonstrated that it is especially effective in dealing with optimization functions in the nonlinear dynamic environments.",
keywords = "Acceleration coefficients, Inertia weight, Particle swarm, Real-time location system, Time of arrival",
author = "Hui Zhu and Yuji Tanabe and Takaaki Baba",
year = "2008",
doi = "10.1541/ieejeiss.128.1747",
language = "English",
volume = "128",
journal = "IEEJ Transactions on Electronics, Information and Systems",
issn = "0385-4221",
publisher = "The Institute of Electrical Engineers of Japan",
number = "12",

}

TY - JOUR

T1 - A random time-varying particle swarm optimization for the real time location systems

AU - Zhu, Hui

AU - Tanabe, Yuji

AU - Baba, Takaaki

PY - 2008

Y1 - 2008

N2 - The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of applications. This paper presents a random time variable PSO algorithm, called the PSO-RTVIWAC, introducing random time-varying inertia weight and acceleration coefficients to significantly improve the performance of the original algorithms. The PSO-RTVIWAC method originates from the random inertia weight (PSO-RANDIW) and time-varying acceleration coefficients (PSO-TVAC) methods. Through the efficient control of search and convergence to the global optimum solution, the PSO-RTVIWAC method is capable of tracking and optimizing the position evaluate in the highly nonlinear real-time location systems (RTLS). Experimental results are compared with three previous PSO approaches from the literatures, showing that the new optimizer significantly outperforms previous approaches. Simply employing a few particles and iterations, a reasonable good positioning accuracy is obtained with the PSO-RTVIWAC method. This property makes the PSO-RTVIWAC method become more attractive since the computation efficiency is improved considerably, i.e. the computation can be completed in an extremely short time, which is crucial for the RTLS. By implementing a hardware design of PSO-RTVIWAC, the computations can simultaneously be performed using hardware to reduce the processing time. Due to a small number of particles and iterations, the hardware resource is saved and the area cost is reduced in the FPGA implementation. An improvement of positioning accuracy is observed with PSO-RTVIWAC method, compared with Taylor Series Expansion (TSE) and Genetic Algorithm (GA). Our experiments on the PSO-RTVIWAC to track and optimize the position evaluate have demonstrated that it is especially effective in dealing with optimization functions in the nonlinear dynamic environments.

AB - The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of applications. This paper presents a random time variable PSO algorithm, called the PSO-RTVIWAC, introducing random time-varying inertia weight and acceleration coefficients to significantly improve the performance of the original algorithms. The PSO-RTVIWAC method originates from the random inertia weight (PSO-RANDIW) and time-varying acceleration coefficients (PSO-TVAC) methods. Through the efficient control of search and convergence to the global optimum solution, the PSO-RTVIWAC method is capable of tracking and optimizing the position evaluate in the highly nonlinear real-time location systems (RTLS). Experimental results are compared with three previous PSO approaches from the literatures, showing that the new optimizer significantly outperforms previous approaches. Simply employing a few particles and iterations, a reasonable good positioning accuracy is obtained with the PSO-RTVIWAC method. This property makes the PSO-RTVIWAC method become more attractive since the computation efficiency is improved considerably, i.e. the computation can be completed in an extremely short time, which is crucial for the RTLS. By implementing a hardware design of PSO-RTVIWAC, the computations can simultaneously be performed using hardware to reduce the processing time. Due to a small number of particles and iterations, the hardware resource is saved and the area cost is reduced in the FPGA implementation. An improvement of positioning accuracy is observed with PSO-RTVIWAC method, compared with Taylor Series Expansion (TSE) and Genetic Algorithm (GA). Our experiments on the PSO-RTVIWAC to track and optimize the position evaluate have demonstrated that it is especially effective in dealing with optimization functions in the nonlinear dynamic environments.

KW - Acceleration coefficients

KW - Inertia weight

KW - Particle swarm

KW - Real-time location system

KW - Time of arrival

UR - http://www.scopus.com/inward/record.url?scp=72549116369&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72549116369&partnerID=8YFLogxK

U2 - 10.1541/ieejeiss.128.1747

DO - 10.1541/ieejeiss.128.1747

M3 - Article

VL - 128

JO - IEEJ Transactions on Electronics, Information and Systems

JF - IEEJ Transactions on Electronics, Information and Systems

SN - 0385-4221

IS - 12

ER -