A regularity criterion for the Schrödinger map

Jishan Fan, Tohru Ozawa

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with bounded mean oscillations.

    Original languageEnglish
    Title of host publicationTrends in Mathematics
    PublisherSpringer International Publishing
    Pages217-223
    Number of pages7
    Volume2
    ISBN (Print)9783319125763
    DOIs
    Publication statusPublished - 2015
    Event9th International ISAAC Congress on Current Trends in Analysis and Its Applications, 2013 - Krakow, Poland
    Duration: 2013 Aug 52013 Aug 9

    Publication series

    NameTrends in Mathematics
    Volume2
    ISSN (Print)22970215
    ISSN (Electronic)2297024X

    Other

    Other9th International ISAAC Congress on Current Trends in Analysis and Its Applications, 2013
    CountryPoland
    CityKrakow
    Period13/8/513/8/9

    Fingerprint

    Bounded Mean Oscillation
    Regularity Criterion

    Keywords

    • Landau-Lifshitz
    • Regularity criterion
    • Schrödinger map

    ASJC Scopus subject areas

    • Mathematics(all)

    Cite this

    Fan, J., & Ozawa, T. (2015). A regularity criterion for the Schrödinger map. In Trends in Mathematics (Vol. 2, pp. 217-223). (Trends in Mathematics; Vol. 2). Springer International Publishing. https://doi.org/10.1007/978-3-319-12577-0-26

    A regularity criterion for the Schrödinger map. / Fan, Jishan; Ozawa, Tohru.

    Trends in Mathematics. Vol. 2 Springer International Publishing, 2015. p. 217-223 (Trends in Mathematics; Vol. 2).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Fan, J & Ozawa, T 2015, A regularity criterion for the Schrödinger map. in Trends in Mathematics. vol. 2, Trends in Mathematics, vol. 2, Springer International Publishing, pp. 217-223, 9th International ISAAC Congress on Current Trends in Analysis and Its Applications, 2013, Krakow, Poland, 13/8/5. https://doi.org/10.1007/978-3-319-12577-0-26
    Fan J, Ozawa T. A regularity criterion for the Schrödinger map. In Trends in Mathematics. Vol. 2. Springer International Publishing. 2015. p. 217-223. (Trends in Mathematics). https://doi.org/10.1007/978-3-319-12577-0-26
    Fan, Jishan ; Ozawa, Tohru. / A regularity criterion for the Schrödinger map. Trends in Mathematics. Vol. 2 Springer International Publishing, 2015. pp. 217-223 (Trends in Mathematics).
    @inproceedings{d61c3fca95144d5bb6adb22575f21f01,
    title = "A regularity criterion for the Schr{\"o}dinger map",
    abstract = "We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schr{\"o}dinger map. Here BMO is the space of functions with bounded mean oscillations.",
    keywords = "Landau-Lifshitz, Regularity criterion, Schr{\"o}dinger map",
    author = "Jishan Fan and Tohru Ozawa",
    year = "2015",
    doi = "10.1007/978-3-319-12577-0-26",
    language = "English",
    isbn = "9783319125763",
    volume = "2",
    series = "Trends in Mathematics",
    publisher = "Springer International Publishing",
    pages = "217--223",
    booktitle = "Trends in Mathematics",

    }

    TY - GEN

    T1 - A regularity criterion for the Schrödinger map

    AU - Fan, Jishan

    AU - Ozawa, Tohru

    PY - 2015

    Y1 - 2015

    N2 - We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with bounded mean oscillations.

    AB - We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with bounded mean oscillations.

    KW - Landau-Lifshitz

    KW - Regularity criterion

    KW - Schrödinger map

    UR - http://www.scopus.com/inward/record.url?scp=84959090749&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84959090749&partnerID=8YFLogxK

    U2 - 10.1007/978-3-319-12577-0-26

    DO - 10.1007/978-3-319-12577-0-26

    M3 - Conference contribution

    SN - 9783319125763

    VL - 2

    T3 - Trends in Mathematics

    SP - 217

    EP - 223

    BT - Trends in Mathematics

    PB - Springer International Publishing

    ER -