A regularity criterion for the Schrödinger map

Jishan Fan, Tohru Ozawa

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with bounded mean oscillations.

    Original languageEnglish
    Title of host publicationTrends in Mathematics
    PublisherSpringer International Publishing
    Pages217-223
    Number of pages7
    Volume2
    ISBN (Print)9783319125763
    DOIs
    Publication statusPublished - 2015
    Event9th International ISAAC Congress on Current Trends in Analysis and Its Applications, 2013 - Krakow, Poland
    Duration: 2013 Aug 52013 Aug 9

    Publication series

    NameTrends in Mathematics
    Volume2
    ISSN (Print)22970215
    ISSN (Electronic)2297024X

    Other

    Other9th International ISAAC Congress on Current Trends in Analysis and Its Applications, 2013
    CountryPoland
    CityKrakow
    Period13/8/513/8/9

    Keywords

    • Landau-Lifshitz
    • Regularity criterion
    • Schrödinger map

    ASJC Scopus subject areas

    • Mathematics(all)

    Fingerprint Dive into the research topics of 'A regularity criterion for the Schrödinger map'. Together they form a unique fingerprint.

  • Cite this

    Fan, J., & Ozawa, T. (2015). A regularity criterion for the Schrödinger map. In Trends in Mathematics (Vol. 2, pp. 217-223). (Trends in Mathematics; Vol. 2). Springer International Publishing. https://doi.org/10.1007/978-3-319-12577-0-26