Abstract
This paper discusses the initial-boundary value problem (with a nonhomogeneous boundary condition) for a multi-dimensional scalar first-order conservation law with a multiplicative noise. One introduces a notion of kinetic formulations in which the kinetic defect measures on the boundary of a domain are truncated. In such a kinetic formulation, one obtains a result of uniqueness and existence. The unique solution is the limit of the solution of the stochastic parabolic approximation.
Original language | English |
---|---|
Pages (from-to) | 607-632 |
Number of pages | 26 |
Journal | Acta Mathematica Vietnamica |
Volume | 41 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2016 Dec 1 |
Keywords
- Conservation laws
- Initial-boundary value problem
- Kinetic formulation
- Stochastic partial differential equations
ASJC Scopus subject areas
- Mathematics(all)