A variational approach for standing waves of FitzHugh-Nagumo type systems

Chao Nien Chen, Kazunaga Tanaka

    Research output: Contribution to journalArticle

    13 Citations (Scopus)

    Abstract

    We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in RN (N≥2): -δu=g(u)-vin RN,-dδv+γv=uin RN,(u(x),v(x))→(0,0)as |x|→∞. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functionalIγ(u,v)=12RN|∇ ;u|2-d|∇ ;v|2dx-RNG(u)+γ2v2-uvdx, defined on Hr1(RN)×Hr1(RN), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais-Smale condition via our new scaling argument. When g(ξ)=ξ(1-ξ)(ξ-α), α∈(0,12), we improve the existence result of Reinecke-Sweers [23].

    Original languageEnglish
    Pages (from-to)109-144
    Number of pages36
    JournalJournal of Differential Equations
    Volume257
    Issue number1
    DOIs
    Publication statusPublished - 2014 Jul 1

    Fingerprint

    FitzHugh-Nagumo
    Standing Wave
    Variational Approach
    Type Systems
    Palais-Smale Condition
    Radially Symmetric Solutions
    Sign-changing Solutions
    Elliptic Systems
    Minimax
    Truncation
    Existence Results
    Scaling

    ASJC Scopus subject areas

    • Analysis

    Cite this

    A variational approach for standing waves of FitzHugh-Nagumo type systems. / Chen, Chao Nien; Tanaka, Kazunaga.

    In: Journal of Differential Equations, Vol. 257, No. 1, 01.07.2014, p. 109-144.

    Research output: Contribution to journalArticle

    @article{b3e6a3f71c104c609918a8feb8a66631,
    title = "A variational approach for standing waves of FitzHugh-Nagumo type systems",
    abstract = "We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in RN (N≥2): -δu=g(u)-vin RN,-dδv+γv=uin RN,(u(x),v(x))→(0,0)as |x|→∞. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functionalIγ(u,v)=12RN|∇ ;u|2-d|∇ ;v|2dx-RNG(u)+γ2v2-uvdx, defined on Hr1(RN)×Hr1(RN), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais-Smale condition via our new scaling argument. When g(ξ)=ξ(1-ξ)(ξ-α), α∈(0,12), we improve the existence result of Reinecke-Sweers [23].",
    author = "Chen, {Chao Nien} and Kazunaga Tanaka",
    year = "2014",
    month = "7",
    day = "1",
    doi = "10.1016/j.jde.2014.03.013",
    language = "English",
    volume = "257",
    pages = "109--144",
    journal = "Journal of Differential Equations",
    issn = "0022-0396",
    publisher = "Academic Press Inc.",
    number = "1",

    }

    TY - JOUR

    T1 - A variational approach for standing waves of FitzHugh-Nagumo type systems

    AU - Chen, Chao Nien

    AU - Tanaka, Kazunaga

    PY - 2014/7/1

    Y1 - 2014/7/1

    N2 - We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in RN (N≥2): -δu=g(u)-vin RN,-dδv+γv=uin RN,(u(x),v(x))→(0,0)as |x|→∞. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functionalIγ(u,v)=12RN|∇ ;u|2-d|∇ ;v|2dx-RNG(u)+γ2v2-uvdx, defined on Hr1(RN)×Hr1(RN), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais-Smale condition via our new scaling argument. When g(ξ)=ξ(1-ξ)(ξ-α), α∈(0,12), we improve the existence result of Reinecke-Sweers [23].

    AB - We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in RN (N≥2): -δu=g(u)-vin RN,-dδv+γv=uin RN,(u(x),v(x))→(0,0)as |x|→∞. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functionalIγ(u,v)=12RN|∇ ;u|2-d|∇ ;v|2dx-RNG(u)+γ2v2-uvdx, defined on Hr1(RN)×Hr1(RN), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais-Smale condition via our new scaling argument. When g(ξ)=ξ(1-ξ)(ξ-α), α∈(0,12), we improve the existence result of Reinecke-Sweers [23].

    UR - http://www.scopus.com/inward/record.url?scp=84899630399&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84899630399&partnerID=8YFLogxK

    U2 - 10.1016/j.jde.2014.03.013

    DO - 10.1016/j.jde.2014.03.013

    M3 - Article

    AN - SCOPUS:84899630399

    VL - 257

    SP - 109

    EP - 144

    JO - Journal of Differential Equations

    JF - Journal of Differential Equations

    SN - 0022-0396

    IS - 1

    ER -