Acceleration effect of thiourea on the oxidation reaction of hypophosphite ion on Ni surface

    Research output: Contribution to journalArticle

    5 Citations (Scopus)

    Abstract

    The acceleration effect of thiourea on an electroless Ni deposition reaction was analyzed through experimental and theoretical approaches. In the experimental approach, the entire deposition process was physically separated into the anodic and the cathodic reactions by preparing two cells connected by a salt bridge. The cells contained either a bath without metal (Ni) ions or a bath without a reducing agent (hypophosphite ions). The current flowing between the two separated baths increased when thiourea was added only to the anodic reaction bath, which indicated that the acceleration effect of thiourea was mainly on the anodic reaction of the hypophosphite ions. Based on this experimental result, in the theoretical calculation approach, a co-adsorption system consisting of thiourea, hypophosphite, and a Ni metal surface was analyzed using density functional theory. Among all the elementary steps of a hypophosphite reaction, thiourea primarily should promote the adsorption step owing to the following two factors. One was the molecular interaction between thiourea and the hypophosphite ion. The other was the restructuring of the electronic states of the Ni surface owing to the adsorption of thiourea, which enhanced the interaction between hypophosphite and its adsorption site on the Ni surface.

    Original languageEnglish
    Pages (from-to)311-316
    Number of pages6
    JournalElectrochimica Acta
    Volume100
    DOIs
    Publication statusPublished - 2013 Jun 30

      Fingerprint

    Keywords

    • Density functional theory
    • Electroless Ni deposition
    • Hypophosphite ion
    • Thiourea

    ASJC Scopus subject areas

    • Electrochemistry
    • Chemical Engineering(all)

    Cite this