Acceleration of self-consistent field convergence in ab initio molecular dynamics simulation with multiconfigurational wave function

Masaki Okoshi, Hiromi Nakai

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The Lagrange interpolation of molecular orbital (LIMO) method, which reduces the number of self-consistent field iterations in ab initio molecular dynamics simulations with the Hartree-Fock method and the Kohn-Sham density functional theories, is extended to the theory of multiconfigurational wave functions. We examine two types of treatments for the active orbitals that are partially occupied. The first treatment, as denoted by LIMO(C), is a simple application of the conventional LIMO method to the union of the inactive core and the active orbitals. The second, as denoted by LIMO(S), separately treats the inactive core and the active orbitals. Numerical tests to compare the two treatments clarify that LIMO(S) is superior to LIMO(C). Further applications of LIMO(S) to various systems demonstrate its effectiveness and robustness. © 2014 Wiley Periodicals, Inc. The Lagrange interpolation of molecular orbital (LIMO) method, which accelerates the self-consistent field (SCF) convergence in ab initio molecular dynamics simulations, is extended to the multiconfigurational (MC) wave function theories, including the complete active space SCF and restricted active space SCF methods. The reduction in the number of SCF iterations of 20-70% is achieved by the MC-type LIMO method.

Original languageEnglish
Pages (from-to)1473-1480
Number of pages8
JournalJournal of Computational Chemistry
Volume35
Issue number20
DOIs
Publication statusPublished - 2014 Jul 30

Keywords

  • Lagrange interpolation technique
  • ab initio molecular dynamics simulation
  • acceleration technique
  • multiconfigurational wave function theory
  • self-consistent field convergence

ASJC Scopus subject areas

  • Chemistry(all)
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Acceleration of self-consistent field convergence in ab initio molecular dynamics simulation with multiconfigurational wave function'. Together they form a unique fingerprint.

  • Cite this