Advanced Cu3Sn and Selenized Cu3Sn@Cu Foam as Electrocatalysts for Water Oxidation under Alkaline and Near-Neutral Conditions

Kannimuthu Karthick, Sengeni Anantharaj, Swathi Patchaiammal, Sathya Narayanan Jagadeesan, Piyush Kumar, Sivasankara Rao Ede, Deepak Kumar Pattanayak, Subrata Kundu

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Water electrolysis is a field growing rapidly to replace the limited fossil fuels for harvesting energy in future. In searching of non-noble and advanced electrocatalysts for the oxygen evolution reaction (OER), here we highlight a new and advanced catalyst, selenized Cu3Sn@Cu foam, with overwhelming activity for OER under both alkaline (1 M KOH) and near-neutral (1 M NaHCO3) conditions. The catalysts were prepared by a double hydrothermal treatment where Cu3Sn is first formed which further underwent for second hydrothermal condition for selenization. For comparison, Cu7Se4@Cu foam was prepared by a hydrothermal treatment under the same protocol. The as-formed Cu3Sn@Cu foam, selenized Cu3Sn@Cu foam, and Cu7Se4@Cu foam were utilized as electrocatalysts and showed their potentiality in terms of activity and stability. In 1 M KOH, for attaining the benchmarking current density of 50 mA cm-2, selenized Cu3Sn@Cu foam required a low overpotential of 384 mV and increased charge transfer kinetics with a lower Tafel slope value of 177 mV/dec comparing Cu3Sn@Cu foam, Cu7Se4@Cu foam, and pristine Cu foam. Furthermore, potentiostatic analysis (PSTAT) was carried out for 40 h for selenized Cu3Sn@Cu foam and with minimum degradation in activity assured the long-term application for hydrogen generation. Similarly, under neutral condition selenized Cu3Sn@Cu foam also delivered better activity trend at higher overpotentials in comparison with others. Therefore, the assistance of both Sn and Se in Cu foam ensured better activity and stability in comparison with only selenized Cu foam. With these possible outcomes, it can also be combined with other active, non-noble elements for enriched hydrogen generation in future.

Original languageEnglish
Pages (from-to)9490-9499
Number of pages10
JournalInorganic Chemistry
Volume58
Issue number14
DOIs
Publication statusPublished - 2019 Jun 25
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Advanced Cu<sub>3</sub>Sn and Selenized Cu<sub>3</sub>Sn@Cu Foam as Electrocatalysts for Water Oxidation under Alkaline and Near-Neutral Conditions'. Together they form a unique fingerprint.

Cite this