Advanced ion implantation and rapid thermal annealing technologies for highly reliable 0.25μm dual gate CMOS

S. Shimizu, T. Kuroi, Y. Kawasaki, T. Tsutsumi, H. Oda, Masahide Inuishi, H. Miyoshi

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Advanced ion implantation and rapid thermal annealing technologies are proposed to realize highly reliable 0.25μm salicided dual gate CMOS for high performance logic application. These technologies mainly consist of mixing the CoSi 2/Si interface using silicon implantation, CVD-Si 3N 4/CVD-SiO 2 sidewall spacer, nitrogen implantation in gate polysilicon and source/drain regions and rapid thermal annealing (RTA) for reduction of thermal budget.

Original languageEnglish
Pages (from-to)64-65
Number of pages2
JournalUnknown Journal
Publication statusPublished - 1996
Externally publishedYes

Fingerprint

Rapid thermal annealing
Ion implantation
ion implantation
Chemical vapor deposition
implantation
CMOS
vapor deposition
annealing
Polysilicon
budgets
spacers
logic
Nitrogen
nitrogen
Silicon
silicon
Hot Temperature

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

Shimizu, S., Kuroi, T., Kawasaki, Y., Tsutsumi, T., Oda, H., Inuishi, M., & Miyoshi, H. (1996). Advanced ion implantation and rapid thermal annealing technologies for highly reliable 0.25μm dual gate CMOS. Unknown Journal, 64-65.

Advanced ion implantation and rapid thermal annealing technologies for highly reliable 0.25μm dual gate CMOS. / Shimizu, S.; Kuroi, T.; Kawasaki, Y.; Tsutsumi, T.; Oda, H.; Inuishi, Masahide; Miyoshi, H.

In: Unknown Journal, 1996, p. 64-65.

Research output: Contribution to journalArticle

Shimizu, S. ; Kuroi, T. ; Kawasaki, Y. ; Tsutsumi, T. ; Oda, H. ; Inuishi, Masahide ; Miyoshi, H. / Advanced ion implantation and rapid thermal annealing technologies for highly reliable 0.25μm dual gate CMOS. In: Unknown Journal. 1996 ; pp. 64-65.
@article{252abee8f3e642f1be4644ff04a53b32,
title = "Advanced ion implantation and rapid thermal annealing technologies for highly reliable 0.25μm dual gate CMOS",
abstract = "Advanced ion implantation and rapid thermal annealing technologies are proposed to realize highly reliable 0.25μm salicided dual gate CMOS for high performance logic application. These technologies mainly consist of mixing the CoSi 2/Si interface using silicon implantation, CVD-Si 3N 4/CVD-SiO 2 sidewall spacer, nitrogen implantation in gate polysilicon and source/drain regions and rapid thermal annealing (RTA) for reduction of thermal budget.",
author = "S. Shimizu and T. Kuroi and Y. Kawasaki and T. Tsutsumi and H. Oda and Masahide Inuishi and H. Miyoshi",
year = "1996",
language = "English",
pages = "64--65",
journal = "Nuclear Physics A",
issn = "0375-9474",
publisher = "Elsevier",

}

TY - JOUR

T1 - Advanced ion implantation and rapid thermal annealing technologies for highly reliable 0.25μm dual gate CMOS

AU - Shimizu, S.

AU - Kuroi, T.

AU - Kawasaki, Y.

AU - Tsutsumi, T.

AU - Oda, H.

AU - Inuishi, Masahide

AU - Miyoshi, H.

PY - 1996

Y1 - 1996

N2 - Advanced ion implantation and rapid thermal annealing technologies are proposed to realize highly reliable 0.25μm salicided dual gate CMOS for high performance logic application. These technologies mainly consist of mixing the CoSi 2/Si interface using silicon implantation, CVD-Si 3N 4/CVD-SiO 2 sidewall spacer, nitrogen implantation in gate polysilicon and source/drain regions and rapid thermal annealing (RTA) for reduction of thermal budget.

AB - Advanced ion implantation and rapid thermal annealing technologies are proposed to realize highly reliable 0.25μm salicided dual gate CMOS for high performance logic application. These technologies mainly consist of mixing the CoSi 2/Si interface using silicon implantation, CVD-Si 3N 4/CVD-SiO 2 sidewall spacer, nitrogen implantation in gate polysilicon and source/drain regions and rapid thermal annealing (RTA) for reduction of thermal budget.

UR - http://www.scopus.com/inward/record.url?scp=0029723679&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029723679&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0029723679

SP - 64

EP - 65

JO - Nuclear Physics A

JF - Nuclear Physics A

SN - 0375-9474

ER -