Alterations in gene expressions encoding preproET-1 and NOS in pulmonary tissue in endotoxemic rats

Sohel Zaedi, Subrina Jesmin, Seiji Maeda, Nobutake Shimojo, Iwao Yamaguchi, Katsutoshi Goto, Takashi Miyauchi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Septic shock is characterized by hypotension and a hyporeactive response to vasopressor agents. The pathogenesis is due to vascular leaks and an increased synthesis of cytokines and nitric oxide (NO). The present study examined the time-dependent alterations of endothelin-1 (ET-1) and the expression of NO synthase (NOS) in lung tissue in a septic rat model. Normal Sprague-Dawley (SD) rats aged 10 weeks received 15 mg/kg lipopolysaccharide (LPS) and then were sacrificed at different time points (1, 3, 6, and 10 hrs). Rats that did not receive LPS were considered to be controls. Both systolic and diastolic pressure decreased in SD rats after LPS administration. Time-dependent onset of features of acute lung injury, such as the infiltration of inflammatory cells and thickening of alveolar septa, were seen in rats that received LPS. A 2.8-fold increase in the expression of preproET-1 level was observed in lung tissue 6 hrs after LPS administration. The expression of endothelial NOS (eNOS) was also altered in lung tissue in a time-dependent fashion. After the administration of LPS, there was a 16-fold increase in the expression of eNOS mRNA. The peak expression of inducible NOS (iNOS) in lung tissue specimens obtained from rats that received LPS was 45-fold higher than that in control rats. ET-1 is a potent vasoconstrictor and thereby may play an important role in the pathogenesis of acute lung injury in a septic rat model. The increased expression of NOS may result in excess NO production and may also play a role in the pulmonary complications of endotoxemia.

Original languageEnglish
Pages (from-to)992-996
Number of pages5
JournalExperimental Biology and Medicine
Volume231
Issue number6
Publication statusPublished - 2006 Jun
Externally publishedYes

Keywords

  • Endothelin-1
  • LPS
  • Lung
  • NOS
  • Sepsis

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Alterations in gene expressions encoding preproET-1 and NOS in pulmonary tissue in endotoxemic rats'. Together they form a unique fingerprint.

Cite this