Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys

Saad Sheikh, Lu Gan, Te Kang Tsao, Hideyuki Murakami, Samrand Shafeie, Sheng Guo

    Research output: Contribution to journalArticle

    11 Citations (Scopus)

    Abstract

    Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials.

    Original languageEnglish
    Pages (from-to)40-51
    Number of pages12
    JournalIntermetallics
    Volume103
    DOIs
    Publication statusPublished - 2018 Dec 1

      Fingerprint

    Keywords

    • Aluminizing
    • Coating
    • Oxidation resistance
    • Pack cementation
    • Refractory high-entropy alloys

    ASJC Scopus subject areas

    • Chemistry(all)
    • Mechanics of Materials
    • Mechanical Engineering
    • Metals and Alloys
    • Materials Chemistry

    Cite this