Ambiguities and best practices in the determination of active sites and real surface area of monometallic electrocatalytic interfaces

Sengeni Anantharaj*, Pitchiah E. Karthik, Suguru Noda

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Determining the number of electrocatalytically accessible sites (ECAS) and real surface area (RSA) for any given electrocatalyst precisely is important in energy conversion electrocatalysis as these are directly used in the determination of intrinsic activity markers. For monometallic electrocatalysts and electrocatalysts of just one type of active site, there believed to be ways of making precise determination of ECAS and RSA using underpotential deposition (UPD), stripping, and redox-charge integration employing transient voltammetric sweeping techniques. This transient nature of sweeping techniques makes the determination of ECAS and RSA relatively less reliable. This study is directed at examining the effects of scan rate in the determination of ECAS and RSA taking Ni(OH)2/CC and Pt wire as model catalytic electrodes. The results suggest that the scan rate and the determined ECAS and RSA values are inversely related and the lowest possible scan rate set experiment was witnessed to give the highest possible ECAS or RSA values with LSV/CV.

Original languageEnglish
Pages (from-to)169-175
Number of pages7
JournalJournal of Colloid And Interface Science
Volume634
DOIs
Publication statusPublished - 2023 Mar 15

Keywords

  • Active Sites
  • Electrocatalysis
  • Energy Conversion Reactions
  • Real Surface Area
  • Underpotential Deposition

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Ambiguities and best practices in the determination of active sites and real surface area of monometallic electrocatalytic interfaces'. Together they form a unique fingerprint.

Cite this