An automatic image-map alignment algorithm based on Mutual Information and Hilbert scan

Li Tian*, Sei Ichiro Kamata

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)


An algorithm for automatic image-map alignment problem using a new similarity measure named Edge-Based Code Mutual Information (EBCMI) and Hilbert scan is presented in this study. Because image and map are very different in their representations, the normal Mutual Information (MI) using the intensity in traditional alignment method may result in misalignment. To solve the problem, codes which are robust to the differences between the image-map pairs are constructed and Mutual Information of the codes is computed as the similarity measure for the alignment. We convert the 3-D transformation search space in alignment to a 1-D search space sequence by using 3-D Hilbert Scan. A new search strategy is also proposed on the 1-D search space sequence. The experimental results show that the proposed EBCMI outperformed the normal MI and some other similarity measures and the proposed search strategy gives flexibility between efficiency and accuracy for automatic imagemap alignment task.

Original languageEnglish
JournalEuropean Signal Processing Conference
Publication statusPublished - 2008 Dec 1
Event16th European Signal Processing Conference, EUSIPCO 2008 - Lausanne, Switzerland
Duration: 2008 Aug 252008 Aug 29

ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering

Cite this