An autonomous multi-camera control system using situation-based role assignment for Tele-operated work machines

Mitsuhiro Kamezaki*, Junjie Yang, Hiroyasu Iwata, Shigeki Sugano

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

A method To autonomously control multiple environmental cameras, which are currently fixed, for providing more adaptive visual information suited To The work situation for advanced unmanned construction is proposed. Situations in which The yaw, pitch, and zoom of cameras should be controlled were analyzed and imaging objects including The machine, manipulator, and end-point and imaging modes including Tracking, zoom, posture, and Trajectory modes were defined. To control each camera simply and effectively, four practical camera roles combined with The imaging objects and modes were defined as The overview-machine, enlarge-end-point, posture-manipulator, and Trajectory-manipulator. A role assignment system was Then developed To assign The four camera roles To four out of six cameras suitable for The work situation, e.g., reaching, grasping, Transport, and releasing, on The basis of The assignment priority rules, in The real Time. Debris removal Tasks were performed by using a VR simulator To compare fixed camera, manual control, and autonomous systems. Results showed That The autonomous system was The best of The Three at decreasing The number of grasping misses and error contacts and increasing The subjective usability while improving The Time efficiency.

Original languageEnglish
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5971-5976
Number of pages6
ISBN (Electronic)9781479936854, 9781479936854
DOIs
Publication statusPublished - 2014 Sept 22
Event2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Duration: 2014 May 312014 Jun 7

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Country/TerritoryChina
CityHong Kong
Period14/5/3114/6/7

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An autonomous multi-camera control system using situation-based role assignment for Tele-operated work machines'. Together they form a unique fingerprint.

Cite this