An experimental analysis of pipe inspection using solar panel receiver for visible light communication and energy harvesting

Wen Zhao*, Mitsuhiro Kamezaki, Kaoru Yamaguchi, Minoru Konno, Akihiko Onuki, Shigeki Sugano

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The maintenance of water pipelines is quite essential since the leakage, deformation, and damage can bring fatal problems to the stable supply and safe use of water resource. In our former study, the transmission approach of information (image, sensor data, etc.) from water pipe based on visible light relay communication technology has been proposed since the visible light has less signal attenuation, stronger anti-electromagnetic interference capability, and smaller bit error ratio (BER) than traditional wireless solutions in the water pipe. However, each inspection sensor in the pipe is still powered by the battery, and thus, the operation time of the sensor is severely restricted by the battery consumption. Solar panel has been introduced in the visible light communication (VLC) technology due to its large signal receiving area and higher efficiency than traditional photodiode (PD) receivers. In this study, the performance of the solar panel receiver for VLC and energy harvesting (EH) has been analyzed. Since the LED owns low irradiation energy for energy harvesting, the received power of solar panel is low. To solve these problems, a solution by using sunlight for EH and LED light for VLC was proposed. We performed several experiments to evaluate the energy harvesting based on current and voltage, and VLC quality based on waveform and BER. The results indicated that the hybrid transmission method could increase the receiving current of solar panel with less influence on the VLC quality.

Original languageEnglish
Title of host publication2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1848-1853
Number of pages6
ISBN (Electronic)9781728167947
DOIs
Publication statusPublished - 2020 Jul
Event2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020 - Boston, United States
Duration: 2020 Jul 62020 Jul 9

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Volume2020-July

Conference

Conference2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
Country/TerritoryUnited States
CityBoston
Period20/7/620/7/9

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'An experimental analysis of pipe inspection using solar panel receiver for visible light communication and energy harvesting'. Together they form a unique fingerprint.

Cite this