An integrable semi-discrete Degasperis-Procesi equation

Bao Feng Feng, Ken Ichi Maruno, Yasuhiro Ohta

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

Original languageEnglish
Pages (from-to)2246-2267
Number of pages22
JournalNonlinearity
Volume30
Issue number6
DOIs
Publication statusPublished - 2017 Apr 19

Keywords

  • CKP hierarchy
  • bilinear equations
  • semi-discrete Degasperis-Procesi equation
  • tau-functions

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'An integrable semi-discrete Degasperis-Procesi equation'. Together they form a unique fingerprint.

Cite this