An integrable semi-discrete Degasperis-Procesi equation

Bao Feng Feng, Kenichi Maruno, Yasuhiro Ohta

    Research output: Contribution to journalArticle

    2 Citations (Scopus)

    Abstract

    Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

    Original languageEnglish
    Pages (from-to)2246-2267
    Number of pages22
    JournalNonlinearity
    Volume30
    Issue number6
    DOIs
    Publication statusPublished - 2017 Apr 19

    Fingerprint

    Degasperis-Procesi Equation
    Discrete Equations
    Solitons
    Soliton Solution
    solitary waves
    Hirota Bilinear Method
    Continuum Limit
    analogs
    continuums
    Analogue
    Converge

    Keywords

    • bilinear equations
    • CKP hierarchy
    • semi-discrete Degasperis-Procesi equation
    • tau-functions

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Mathematical Physics
    • Physics and Astronomy(all)
    • Applied Mathematics

    Cite this

    An integrable semi-discrete Degasperis-Procesi equation. / Feng, Bao Feng; Maruno, Kenichi; Ohta, Yasuhiro.

    In: Nonlinearity, Vol. 30, No. 6, 19.04.2017, p. 2246-2267.

    Research output: Contribution to journalArticle

    Feng, Bao Feng ; Maruno, Kenichi ; Ohta, Yasuhiro. / An integrable semi-discrete Degasperis-Procesi equation. In: Nonlinearity. 2017 ; Vol. 30, No. 6. pp. 2246-2267.
    @article{894fed495db24687a06c53121ba2ffe0,
    title = "An integrable semi-discrete Degasperis-Procesi equation",
    abstract = "Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.",
    keywords = "bilinear equations, CKP hierarchy, semi-discrete Degasperis-Procesi equation, tau-functions",
    author = "Feng, {Bao Feng} and Kenichi Maruno and Yasuhiro Ohta",
    year = "2017",
    month = "4",
    day = "19",
    doi = "10.1088/1361-6544/aa67fc",
    language = "English",
    volume = "30",
    pages = "2246--2267",
    journal = "Nonlinearity",
    issn = "0951-7715",
    publisher = "IOP Publishing Ltd.",
    number = "6",

    }

    TY - JOUR

    T1 - An integrable semi-discrete Degasperis-Procesi equation

    AU - Feng, Bao Feng

    AU - Maruno, Kenichi

    AU - Ohta, Yasuhiro

    PY - 2017/4/19

    Y1 - 2017/4/19

    N2 - Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

    AB - Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

    KW - bilinear equations

    KW - CKP hierarchy

    KW - semi-discrete Degasperis-Procesi equation

    KW - tau-functions

    UR - http://www.scopus.com/inward/record.url?scp=85019626933&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85019626933&partnerID=8YFLogxK

    U2 - 10.1088/1361-6544/aa67fc

    DO - 10.1088/1361-6544/aa67fc

    M3 - Article

    AN - SCOPUS:85019626933

    VL - 30

    SP - 2246

    EP - 2267

    JO - Nonlinearity

    JF - Nonlinearity

    SN - 0951-7715

    IS - 6

    ER -