An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation

H. Wei, H. Sasaki, J. Kubokawa, R. Yokoyama

    Research output: Contribution to journalArticle

    Abstract

    This paper presents a new interior point algorithm to solve power system weighted nonlinear L1 norm state estimation problems (IPWNL1). On the basis of the perturbed Karush-Kuhn-Tucker (KKT) conditions of the primal problem, we derive the IPWNL1 algorithm for solving the state estimation problems. Compared with the sequential linear programming approach and logarithmic barrier function method, the proposed IPWNL1 algorithm possesses excellent convergence property. That is, the number of iterations until convergence is roughly constant with system size and measurement redundancy and mostly less than 10. Moreover, it has another valuable property that the convergence of the algorithm is quite insensitive to changes in weighting factors. To greatly enhance the computational efficiency, two schemes of the correction equation are proposed which have been realized by the rearrangement of the correction equation. Simulation experiments on test systems, which range in size from 5 to 1047 buses, have shown that the proposed algorithm has reached the level of practical applications due to its fast and robust property.

    Original languageEnglish
    Pages (from-to)41-42
    Number of pages2
    JournalIEEE Power Engineering Review
    Volume17
    Issue number10
    Publication statusPublished - 1997

    Fingerprint

    State estimation
    Nonlinear systems
    Computational efficiency
    Linear programming
    Redundancy
    Experiments

    Keywords

    • Interior point methods
    • Perturbed kkt conditions
    • Power system
    • State estimation
    • Weighted nonlinear l norm estimation

    ASJC Scopus subject areas

    • Electrical and Electronic Engineering

    Cite this

    An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation. / Wei, H.; Sasaki, H.; Kubokawa, J.; Yokoyama, R.

    In: IEEE Power Engineering Review, Vol. 17, No. 10, 1997, p. 41-42.

    Research output: Contribution to journalArticle

    Wei, H, Sasaki, H, Kubokawa, J & Yokoyama, R 1997, 'An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation', IEEE Power Engineering Review, vol. 17, no. 10, pp. 41-42.
    Wei, H. ; Sasaki, H. ; Kubokawa, J. ; Yokoyama, R. / An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation. In: IEEE Power Engineering Review. 1997 ; Vol. 17, No. 10. pp. 41-42.
    @article{b83662922ba24f25abb66f5cc94dec8e,
    title = "An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation",
    abstract = "This paper presents a new interior point algorithm to solve power system weighted nonlinear L1 norm state estimation problems (IPWNL1). On the basis of the perturbed Karush-Kuhn-Tucker (KKT) conditions of the primal problem, we derive the IPWNL1 algorithm for solving the state estimation problems. Compared with the sequential linear programming approach and logarithmic barrier function method, the proposed IPWNL1 algorithm possesses excellent convergence property. That is, the number of iterations until convergence is roughly constant with system size and measurement redundancy and mostly less than 10. Moreover, it has another valuable property that the convergence of the algorithm is quite insensitive to changes in weighting factors. To greatly enhance the computational efficiency, two schemes of the correction equation are proposed which have been realized by the rearrangement of the correction equation. Simulation experiments on test systems, which range in size from 5 to 1047 buses, have shown that the proposed algorithm has reached the level of practical applications due to its fast and robust property.",
    keywords = "Interior point methods, Perturbed kkt conditions, Power system, State estimation, Weighted nonlinear l norm estimation",
    author = "H. Wei and H. Sasaki and J. Kubokawa and R. Yokoyama",
    year = "1997",
    language = "English",
    volume = "17",
    pages = "41--42",
    journal = "IEEE Power Engineering Review",
    issn = "0272-1724",
    publisher = "Institute of Electrical and Electronics Engineers Inc.",
    number = "10",

    }

    TY - JOUR

    T1 - An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation

    AU - Wei, H.

    AU - Sasaki, H.

    AU - Kubokawa, J.

    AU - Yokoyama, R.

    PY - 1997

    Y1 - 1997

    N2 - This paper presents a new interior point algorithm to solve power system weighted nonlinear L1 norm state estimation problems (IPWNL1). On the basis of the perturbed Karush-Kuhn-Tucker (KKT) conditions of the primal problem, we derive the IPWNL1 algorithm for solving the state estimation problems. Compared with the sequential linear programming approach and logarithmic barrier function method, the proposed IPWNL1 algorithm possesses excellent convergence property. That is, the number of iterations until convergence is roughly constant with system size and measurement redundancy and mostly less than 10. Moreover, it has another valuable property that the convergence of the algorithm is quite insensitive to changes in weighting factors. To greatly enhance the computational efficiency, two schemes of the correction equation are proposed which have been realized by the rearrangement of the correction equation. Simulation experiments on test systems, which range in size from 5 to 1047 buses, have shown that the proposed algorithm has reached the level of practical applications due to its fast and robust property.

    AB - This paper presents a new interior point algorithm to solve power system weighted nonlinear L1 norm state estimation problems (IPWNL1). On the basis of the perturbed Karush-Kuhn-Tucker (KKT) conditions of the primal problem, we derive the IPWNL1 algorithm for solving the state estimation problems. Compared with the sequential linear programming approach and logarithmic barrier function method, the proposed IPWNL1 algorithm possesses excellent convergence property. That is, the number of iterations until convergence is roughly constant with system size and measurement redundancy and mostly less than 10. Moreover, it has another valuable property that the convergence of the algorithm is quite insensitive to changes in weighting factors. To greatly enhance the computational efficiency, two schemes of the correction equation are proposed which have been realized by the rearrangement of the correction equation. Simulation experiments on test systems, which range in size from 5 to 1047 buses, have shown that the proposed algorithm has reached the level of practical applications due to its fast and robust property.

    KW - Interior point methods

    KW - Perturbed kkt conditions

    KW - Power system

    KW - State estimation

    KW - Weighted nonlinear l norm estimation

    UR - http://www.scopus.com/inward/record.url?scp=35848929284&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=35848929284&partnerID=8YFLogxK

    M3 - Article

    VL - 17

    SP - 41

    EP - 42

    JO - IEEE Power Engineering Review

    JF - IEEE Power Engineering Review

    SN - 0272-1724

    IS - 10

    ER -