Asymmetric autocatalysis - Discovery and development

Kenso Soai, Takanori Shibata, Itaru Sato

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

The asymmetric autocatalysis is an enantioselective synthesis where the asymmetric catalyst and the product possess the same structure and the same absolute configuration. We disclosed chiral α-isopropyl-3-pyridinemethanols, α-isopropyl-5-pyrimidinemethanols, and α-isopropyl-3-quinolinemethanols operate as asymmetric autocatalysts in the enantioselective additions of i-Pr2Zn to 3-pyridinecarbaldehyde, 5-pyrimidinecarbaldehyde and 3-quinolinecarbaldehyde, respectively. Especially, practically perfect asymmetric autocatalysis (>99% yield and >99.5%e.e.) is attained by using 2-(3,3-dimethyl-1-butynyl)-α-isopropyl-5-pyrimidinernethanol as an asymmetric autocatalyst. Moreover, consecutive asymmetric autocatalytic reaction enables α-isopropyl-5-pyrimidine- and α-isopropyl-3-quinolinemethanols as well as 5-(1-hydroxy-2-methylpropyl)pyridine-3-carboxamides with extremely low e.e. to automultiply with dramatic amplification of e.e. without any assistance of other chiral auxiliaries. It was also found that various chiral compounds can operate as chiral initiators in the enantioselective addition of i-Pr2Zn to 5-pyrimidinecarbaldehydes and α-isopropyl-5-pyrimidinemethanols with high e.e. were obtained. For example, in the presence of L-leucine with 2%e.e., asymmetric autocatalysis affords an (R)-α-isopropyl-5-pyrimidinemethanol with high e.e. It is known that asymmetric degradation of racemic leucine using circularly polarized light (CPL) gives chiral leucine (ca. 2%e.e.). Thus, asymmetric autocatalysis with amplification of e.e. serves as a correlation between CPL and highly enantiomerically enriched organic molecules. Moreover, enantiomorphic inorganic crystals such as quartz (SiO2) and sodium chlorate (NaClO3) can be utilized as chiral initiators and an α-isopropyl-5-pyrimidinemethanols with high e.e. was obtained in high yields.

Original languageEnglish
Pages (from-to)141-149
Number of pages9
JournalNippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal
Volume2001
Issue number3
Publication statusPublished - 2001
Externally publishedYes

Fingerprint

Light polarization
Leucine
Amplification
Nicotinyl Alcohol
Pyridine
Quartz
Sodium
Degradation
Crystals
Catalysts
Molecules

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Asymmetric autocatalysis - Discovery and development. / Soai, Kenso; Shibata, Takanori; Sato, Itaru.

In: Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, Vol. 2001, No. 3, 2001, p. 141-149.

Research output: Contribution to journalArticle

@article{370a5a7adc8043d2a1d158fe68aa97ab,
title = "Asymmetric autocatalysis - Discovery and development",
abstract = "The asymmetric autocatalysis is an enantioselective synthesis where the asymmetric catalyst and the product possess the same structure and the same absolute configuration. We disclosed chiral α-isopropyl-3-pyridinemethanols, α-isopropyl-5-pyrimidinemethanols, and α-isopropyl-3-quinolinemethanols operate as asymmetric autocatalysts in the enantioselective additions of i-Pr2Zn to 3-pyridinecarbaldehyde, 5-pyrimidinecarbaldehyde and 3-quinolinecarbaldehyde, respectively. Especially, practically perfect asymmetric autocatalysis (>99{\%} yield and >99.5{\%}e.e.) is attained by using 2-(3,3-dimethyl-1-butynyl)-α-isopropyl-5-pyrimidinernethanol as an asymmetric autocatalyst. Moreover, consecutive asymmetric autocatalytic reaction enables α-isopropyl-5-pyrimidine- and α-isopropyl-3-quinolinemethanols as well as 5-(1-hydroxy-2-methylpropyl)pyridine-3-carboxamides with extremely low e.e. to automultiply with dramatic amplification of e.e. without any assistance of other chiral auxiliaries. It was also found that various chiral compounds can operate as chiral initiators in the enantioselective addition of i-Pr2Zn to 5-pyrimidinecarbaldehydes and α-isopropyl-5-pyrimidinemethanols with high e.e. were obtained. For example, in the presence of L-leucine with 2{\%}e.e., asymmetric autocatalysis affords an (R)-α-isopropyl-5-pyrimidinemethanol with high e.e. It is known that asymmetric degradation of racemic leucine using circularly polarized light (CPL) gives chiral leucine (ca. 2{\%}e.e.). Thus, asymmetric autocatalysis with amplification of e.e. serves as a correlation between CPL and highly enantiomerically enriched organic molecules. Moreover, enantiomorphic inorganic crystals such as quartz (SiO2) and sodium chlorate (NaClO3) can be utilized as chiral initiators and an α-isopropyl-5-pyrimidinemethanols with high e.e. was obtained in high yields.",
author = "Kenso Soai and Takanori Shibata and Itaru Sato",
year = "2001",
language = "English",
volume = "2001",
pages = "141--149",
journal = "Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal",
issn = "0369-4577",
publisher = "Chemical Society of Japan",
number = "3",

}

TY - JOUR

T1 - Asymmetric autocatalysis - Discovery and development

AU - Soai, Kenso

AU - Shibata, Takanori

AU - Sato, Itaru

PY - 2001

Y1 - 2001

N2 - The asymmetric autocatalysis is an enantioselective synthesis where the asymmetric catalyst and the product possess the same structure and the same absolute configuration. We disclosed chiral α-isopropyl-3-pyridinemethanols, α-isopropyl-5-pyrimidinemethanols, and α-isopropyl-3-quinolinemethanols operate as asymmetric autocatalysts in the enantioselective additions of i-Pr2Zn to 3-pyridinecarbaldehyde, 5-pyrimidinecarbaldehyde and 3-quinolinecarbaldehyde, respectively. Especially, practically perfect asymmetric autocatalysis (>99% yield and >99.5%e.e.) is attained by using 2-(3,3-dimethyl-1-butynyl)-α-isopropyl-5-pyrimidinernethanol as an asymmetric autocatalyst. Moreover, consecutive asymmetric autocatalytic reaction enables α-isopropyl-5-pyrimidine- and α-isopropyl-3-quinolinemethanols as well as 5-(1-hydroxy-2-methylpropyl)pyridine-3-carboxamides with extremely low e.e. to automultiply with dramatic amplification of e.e. without any assistance of other chiral auxiliaries. It was also found that various chiral compounds can operate as chiral initiators in the enantioselective addition of i-Pr2Zn to 5-pyrimidinecarbaldehydes and α-isopropyl-5-pyrimidinemethanols with high e.e. were obtained. For example, in the presence of L-leucine with 2%e.e., asymmetric autocatalysis affords an (R)-α-isopropyl-5-pyrimidinemethanol with high e.e. It is known that asymmetric degradation of racemic leucine using circularly polarized light (CPL) gives chiral leucine (ca. 2%e.e.). Thus, asymmetric autocatalysis with amplification of e.e. serves as a correlation between CPL and highly enantiomerically enriched organic molecules. Moreover, enantiomorphic inorganic crystals such as quartz (SiO2) and sodium chlorate (NaClO3) can be utilized as chiral initiators and an α-isopropyl-5-pyrimidinemethanols with high e.e. was obtained in high yields.

AB - The asymmetric autocatalysis is an enantioselective synthesis where the asymmetric catalyst and the product possess the same structure and the same absolute configuration. We disclosed chiral α-isopropyl-3-pyridinemethanols, α-isopropyl-5-pyrimidinemethanols, and α-isopropyl-3-quinolinemethanols operate as asymmetric autocatalysts in the enantioselective additions of i-Pr2Zn to 3-pyridinecarbaldehyde, 5-pyrimidinecarbaldehyde and 3-quinolinecarbaldehyde, respectively. Especially, practically perfect asymmetric autocatalysis (>99% yield and >99.5%e.e.) is attained by using 2-(3,3-dimethyl-1-butynyl)-α-isopropyl-5-pyrimidinernethanol as an asymmetric autocatalyst. Moreover, consecutive asymmetric autocatalytic reaction enables α-isopropyl-5-pyrimidine- and α-isopropyl-3-quinolinemethanols as well as 5-(1-hydroxy-2-methylpropyl)pyridine-3-carboxamides with extremely low e.e. to automultiply with dramatic amplification of e.e. without any assistance of other chiral auxiliaries. It was also found that various chiral compounds can operate as chiral initiators in the enantioselective addition of i-Pr2Zn to 5-pyrimidinecarbaldehydes and α-isopropyl-5-pyrimidinemethanols with high e.e. were obtained. For example, in the presence of L-leucine with 2%e.e., asymmetric autocatalysis affords an (R)-α-isopropyl-5-pyrimidinemethanol with high e.e. It is known that asymmetric degradation of racemic leucine using circularly polarized light (CPL) gives chiral leucine (ca. 2%e.e.). Thus, asymmetric autocatalysis with amplification of e.e. serves as a correlation between CPL and highly enantiomerically enriched organic molecules. Moreover, enantiomorphic inorganic crystals such as quartz (SiO2) and sodium chlorate (NaClO3) can be utilized as chiral initiators and an α-isopropyl-5-pyrimidinemethanols with high e.e. was obtained in high yields.

UR - http://www.scopus.com/inward/record.url?scp=15944385011&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=15944385011&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:15944385011

VL - 2001

SP - 141

EP - 149

JO - Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal

JF - Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal

SN - 0369-4577

IS - 3

ER -