Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space

Yasuhiro Fujita, Hitoshi Ishii, Paola Loreti

    Research output: Contribution to journalArticle

    22 Citations (Scopus)

    Abstract

    We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + αx · Du + H(Du) = f(x) in ℝn × (0, ∞), where α is a positive constant and H is a convex function on ℝn, and establish a convergence result for the viscosity solution u(x, t) as t → ∞. Indiana University Mathematics Journal

    Original languageEnglish
    Pages (from-to)1671-1700
    Number of pages30
    JournalIndiana University Mathematics Journal
    Volume55
    Issue number5
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Asymptotics of Solutions
    Hamilton-Jacobi Equation
    Viscosity Solutions
    Euclidean
    Convergence Results
    Convex function
    Cauchy Problem
    Asymptotic Behavior

    Keywords

    • Asymptotic behavior
    • Asymptotic solutions
    • Hamilton-Jacobi equations

    ASJC Scopus subject areas

    • Mathematics(all)

    Cite this

    Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space. / Fujita, Yasuhiro; Ishii, Hitoshi; Loreti, Paola.

    In: Indiana University Mathematics Journal, Vol. 55, No. 5, 2006, p. 1671-1700.

    Research output: Contribution to journalArticle

    Fujita, Yasuhiro ; Ishii, Hitoshi ; Loreti, Paola. / Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space. In: Indiana University Mathematics Journal. 2006 ; Vol. 55, No. 5. pp. 1671-1700.
    @article{f1f2a4bd4f2c481ba404c42e6281fc28,
    title = "Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space",
    abstract = "We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + αx · Du + H(Du) = f(x) in ℝn × (0, ∞), where α is a positive constant and H is a convex function on ℝn, and establish a convergence result for the viscosity solution u(x, t) as t → ∞. Indiana University Mathematics Journal",
    keywords = "Asymptotic behavior, Asymptotic solutions, Hamilton-Jacobi equations",
    author = "Yasuhiro Fujita and Hitoshi Ishii and Paola Loreti",
    year = "2006",
    doi = "10.1512/iumj.2006.55.2813",
    language = "English",
    volume = "55",
    pages = "1671--1700",
    journal = "Indiana University Mathematics Journal",
    issn = "0022-2518",
    publisher = "Indiana University",
    number = "5",

    }

    TY - JOUR

    T1 - Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space

    AU - Fujita, Yasuhiro

    AU - Ishii, Hitoshi

    AU - Loreti, Paola

    PY - 2006

    Y1 - 2006

    N2 - We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + αx · Du + H(Du) = f(x) in ℝn × (0, ∞), where α is a positive constant and H is a convex function on ℝn, and establish a convergence result for the viscosity solution u(x, t) as t → ∞. Indiana University Mathematics Journal

    AB - We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + αx · Du + H(Du) = f(x) in ℝn × (0, ∞), where α is a positive constant and H is a convex function on ℝn, and establish a convergence result for the viscosity solution u(x, t) as t → ∞. Indiana University Mathematics Journal

    KW - Asymptotic behavior

    KW - Asymptotic solutions

    KW - Hamilton-Jacobi equations

    UR - http://www.scopus.com/inward/record.url?scp=33845535277&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=33845535277&partnerID=8YFLogxK

    U2 - 10.1512/iumj.2006.55.2813

    DO - 10.1512/iumj.2006.55.2813

    M3 - Article

    VL - 55

    SP - 1671

    EP - 1700

    JO - Indiana University Mathematics Journal

    JF - Indiana University Mathematics Journal

    SN - 0022-2518

    IS - 5

    ER -