Asymptotic stability for the Navier-Stokes equations

Jishan Fan, Tohru Ozawa

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We prove the asymptotic stability for weak solutions to the 3-D Navier-Stokes equations in the class ∇u ∈ L1(0, ∞; Ḃ∞∞ 0(ℝ3)) ∩ LLogL(0, ∞; Ḃ∞∞ 0(ℝ3)) with arbitrary initial and external perturbations. This solves a problem due to Yong Zhou (Proc. Roy. Soc. Edinburgh, 136A (2006), 1099-1109).

Original languageEnglish
Pages (from-to)379-389
Number of pages11
JournalJournal of Evolution Equations
Volume8
Issue number2
DOIs
Publication statusPublished - 2008 May
Externally publishedYes

Fingerprint

Navier-Stokes equations
Asymptotic Stability
3D
Weak Solution
Navier-Stokes Equations
perturbation
Perturbation
Arbitrary
Class

Keywords

  • Asymptotic stability
  • Besov spaces
  • Navier-Stokes equations

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Cite this

Asymptotic stability for the Navier-Stokes equations. / Fan, Jishan; Ozawa, Tohru.

In: Journal of Evolution Equations, Vol. 8, No. 2, 05.2008, p. 379-389.

Research output: Contribution to journalArticle

@article{fd7ab375c1e842f1b514e5b6f103bda6,
title = "Asymptotic stability for the Navier-Stokes equations",
abstract = "We prove the asymptotic stability for weak solutions to the 3-D Navier-Stokes equations in the class ∇u ∈ L1(0, ∞; Ḃ∞∞ 0(ℝ3)) ∩ LLogL(0, ∞; Ḃ∞∞ 0(ℝ3)) with arbitrary initial and external perturbations. This solves a problem due to Yong Zhou (Proc. Roy. Soc. Edinburgh, 136A (2006), 1099-1109).",
keywords = "Asymptotic stability, Besov spaces, Navier-Stokes equations",
author = "Jishan Fan and Tohru Ozawa",
year = "2008",
month = "5",
doi = "10.1007/s00028-008-0396-1",
language = "English",
volume = "8",
pages = "379--389",
journal = "Journal of Evolution Equations",
issn = "1424-3199",
publisher = "Birkhauser Verlag Basel",
number = "2",

}

TY - JOUR

T1 - Asymptotic stability for the Navier-Stokes equations

AU - Fan, Jishan

AU - Ozawa, Tohru

PY - 2008/5

Y1 - 2008/5

N2 - We prove the asymptotic stability for weak solutions to the 3-D Navier-Stokes equations in the class ∇u ∈ L1(0, ∞; Ḃ∞∞ 0(ℝ3)) ∩ LLogL(0, ∞; Ḃ∞∞ 0(ℝ3)) with arbitrary initial and external perturbations. This solves a problem due to Yong Zhou (Proc. Roy. Soc. Edinburgh, 136A (2006), 1099-1109).

AB - We prove the asymptotic stability for weak solutions to the 3-D Navier-Stokes equations in the class ∇u ∈ L1(0, ∞; Ḃ∞∞ 0(ℝ3)) ∩ LLogL(0, ∞; Ḃ∞∞ 0(ℝ3)) with arbitrary initial and external perturbations. This solves a problem due to Yong Zhou (Proc. Roy. Soc. Edinburgh, 136A (2006), 1099-1109).

KW - Asymptotic stability

KW - Besov spaces

KW - Navier-Stokes equations

UR - http://www.scopus.com/inward/record.url?scp=44549085560&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44549085560&partnerID=8YFLogxK

U2 - 10.1007/s00028-008-0396-1

DO - 10.1007/s00028-008-0396-1

M3 - Article

AN - SCOPUS:44549085560

VL - 8

SP - 379

EP - 389

JO - Journal of Evolution Equations

JF - Journal of Evolution Equations

SN - 1424-3199

IS - 2

ER -