Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

Pankaj Dhonukshe, Ilya Grigoriev, Rainer Fischer, Motoki Tominaga, David G. Robinson, Jiří Hašek, Tomasz Paciorek, Jan Petrášek, Daniela Seifertová, Ricardo Tejos, Lee A. Meisel, Eva Zažímalová, Theodorus W.J. Gadella, York Dieter Stierhof, Takashi Ueda, Kazuhiro Oiwa, Anna Akhmanova, Roland Brock, Anne Spang, Jiří Friml*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

190 Citations (Scopus)

Abstract

Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.

Original languageEnglish
Pages (from-to)4489-4494
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume105
Issue number11
DOIs
Publication statusPublished - 2008 Mar 18
Externally publishedYes

Keywords

  • Auxin efflux inhibitors
  • PIN proteins
  • Plant development
  • Vesicle traffic

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes'. Together they form a unique fingerprint.

Cite this