Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment

THE TIBET ASγ COLLABORATION

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Study of the chemical composition of cosmic rays in the knee region has been made by the Tibet ASγ Collaboration using the Tibet-III air shower array and an air-shower-core detector. Based on the data of all-particle spectrum, proton, and helium spectra obtained by Tibet hybrid experiment, upper and lower limits of the average mass number of primary cosmic rays were estimated in the energy interval between 1015eV and 1016eV assuming unmeasured components (all − proton − helium) are any mixture of nuclei between carbon and iron. The lower limit of hln Ai with carbon model is approximately 2 and the upper limit with iron model is approximately 3.5 with weak energy dependences. The systematic errors involved in estimating hln Ai due to the primary energy determination or the interaction model dependence in deriving the flux of each nuclear element are discussed and found to be small enough to set the boundary for hln Ai. A comparison of our result with recent Icecube data suggests that the primary mass composition is dominated by carbon at 1015 eV and it tends to be dominated by iron at 1016 eV.

Original languageEnglish
Title of host publicationProceedings of the 33rd International Cosmic Rays Conference, ICRC 2013
PublisherSociedade Brasileira de Fisica
Volume2013-October
ISBN (Electronic)9788589064293
Publication statusPublished - 2013 Jan 1
Event33rd International Cosmic Rays Conference, ICRC 2013 - Rio de Janeiro, Brazil
Duration: 2013 Jul 22013 Jul 9

Other

Other33rd International Cosmic Rays Conference, ICRC 2013
CountryBrazil
CityRio de Janeiro
Period13/7/213/7/9

Fingerprint

primary cosmic rays
Tibet
cosmic ray showers
iron
carbon
helium
protons
systematic errors
energy
cosmic rays
chemical composition
estimating
intervals
nuclei
detectors
interactions

Keywords

  • Chemical composition
  • Knee
  • Tibet hybrid experiment

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

THE TIBET ASγ COLLABORATION (2013). Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment. In Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013 (Vol. 2013-October). Sociedade Brasileira de Fisica.

Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment. / THE TIBET ASγ COLLABORATION.

Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. Vol. 2013-October Sociedade Brasileira de Fisica, 2013.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

THE TIBET ASγ COLLABORATION 2013, Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment. in Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. vol. 2013-October, Sociedade Brasileira de Fisica, 33rd International Cosmic Rays Conference, ICRC 2013, Rio de Janeiro, Brazil, 13/7/2.
THE TIBET ASγ COLLABORATION. Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment. In Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. Vol. 2013-October. Sociedade Brasileira de Fisica. 2013
THE TIBET ASγ COLLABORATION. / Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment. Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. Vol. 2013-October Sociedade Brasileira de Fisica, 2013.
@inproceedings{02a96044ad5b4ed68a82da0eeeca7e81,
title = "Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment",
abstract = "Study of the chemical composition of cosmic rays in the knee region has been made by the Tibet ASγ Collaboration using the Tibet-III air shower array and an air-shower-core detector. Based on the data of all-particle spectrum, proton, and helium spectra obtained by Tibet hybrid experiment, upper and lower limits of the average mass number of primary cosmic rays were estimated in the energy interval between 1015eV and 1016eV assuming unmeasured components (all − proton − helium) are any mixture of nuclei between carbon and iron. The lower limit of hln Ai with carbon model is approximately 2 and the upper limit with iron model is approximately 3.5 with weak energy dependences. The systematic errors involved in estimating hln Ai due to the primary energy determination or the interaction model dependence in deriving the flux of each nuclear element are discussed and found to be small enough to set the boundary for hln Ai. A comparison of our result with recent Icecube data suggests that the primary mass composition is dominated by carbon at 1015 eV and it tends to be dominated by iron at 1016 eV.",
keywords = "Chemical composition, Knee, Tibet hybrid experiment",
author = "{THE TIBET ASγ COLLABORATION} and M. Amenomori and Bi, {X. J.} and D. Chen and Chen, {T. L.} and Chen, {W. Y.} and Cui, {S. W.} and Danzengluobu and Ding, {L. K.} and Feng, {C. F.} and Zhaoyang Feng and Feng, {Z. Y.} and Gou, {Q. B.} and Guo, {Y. Q.} and He, {H. H.} and He, {Z. T.} and K. Hibino and N. Hotta and Haibing Hu and Hu, {H. B.} and J. Huang and Jia, {H. Y.} and L. Jiang and F. Kajino and K. Kasahara and Y. Katayose and C. Kato and K. Kawata and M. Kozai and Labaciren and Le, {G. M.} and Li, {A. F.} and Li, {H. J.} and Li, {W. J.} and C. Liu and Liu, {J. S.} and Liu, {M. Y.} and H. Lu and Meng, {X. R.} and K. Mizutani and K. Munakata and H. Nanjo and M. Nishizawa and M. Ohnishi and I. Ohta and Shunsuke Ozawa and Qian, {X. L.} and Qu, {X. B.} and T. Saito and Saito, {T. Y.} and Shoji Torii",
year = "2013",
month = "1",
day = "1",
language = "English",
volume = "2013-October",
booktitle = "Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013",
publisher = "Sociedade Brasileira de Fisica",
address = "Brazil",

}

TY - GEN

T1 - Average mass of primary cosmic rays in the knee energy region inferred from Tibet experiment

AU - THE TIBET ASγ COLLABORATION

AU - Amenomori, M.

AU - Bi, X. J.

AU - Chen, D.

AU - Chen, T. L.

AU - Chen, W. Y.

AU - Cui, S. W.

AU - Danzengluobu,

AU - Ding, L. K.

AU - Feng, C. F.

AU - Feng, Zhaoyang

AU - Feng, Z. Y.

AU - Gou, Q. B.

AU - Guo, Y. Q.

AU - He, H. H.

AU - He, Z. T.

AU - Hibino, K.

AU - Hotta, N.

AU - Hu, Haibing

AU - Hu, H. B.

AU - Huang, J.

AU - Jia, H. Y.

AU - Jiang, L.

AU - Kajino, F.

AU - Kasahara, K.

AU - Katayose, Y.

AU - Kato, C.

AU - Kawata, K.

AU - Kozai, M.

AU - Labaciren,

AU - Le, G. M.

AU - Li, A. F.

AU - Li, H. J.

AU - Li, W. J.

AU - Liu, C.

AU - Liu, J. S.

AU - Liu, M. Y.

AU - Lu, H.

AU - Meng, X. R.

AU - Mizutani, K.

AU - Munakata, K.

AU - Nanjo, H.

AU - Nishizawa, M.

AU - Ohnishi, M.

AU - Ohta, I.

AU - Ozawa, Shunsuke

AU - Qian, X. L.

AU - Qu, X. B.

AU - Saito, T.

AU - Saito, T. Y.

AU - Torii, Shoji

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Study of the chemical composition of cosmic rays in the knee region has been made by the Tibet ASγ Collaboration using the Tibet-III air shower array and an air-shower-core detector. Based on the data of all-particle spectrum, proton, and helium spectra obtained by Tibet hybrid experiment, upper and lower limits of the average mass number of primary cosmic rays were estimated in the energy interval between 1015eV and 1016eV assuming unmeasured components (all − proton − helium) are any mixture of nuclei between carbon and iron. The lower limit of hln Ai with carbon model is approximately 2 and the upper limit with iron model is approximately 3.5 with weak energy dependences. The systematic errors involved in estimating hln Ai due to the primary energy determination or the interaction model dependence in deriving the flux of each nuclear element are discussed and found to be small enough to set the boundary for hln Ai. A comparison of our result with recent Icecube data suggests that the primary mass composition is dominated by carbon at 1015 eV and it tends to be dominated by iron at 1016 eV.

AB - Study of the chemical composition of cosmic rays in the knee region has been made by the Tibet ASγ Collaboration using the Tibet-III air shower array and an air-shower-core detector. Based on the data of all-particle spectrum, proton, and helium spectra obtained by Tibet hybrid experiment, upper and lower limits of the average mass number of primary cosmic rays were estimated in the energy interval between 1015eV and 1016eV assuming unmeasured components (all − proton − helium) are any mixture of nuclei between carbon and iron. The lower limit of hln Ai with carbon model is approximately 2 and the upper limit with iron model is approximately 3.5 with weak energy dependences. The systematic errors involved in estimating hln Ai due to the primary energy determination or the interaction model dependence in deriving the flux of each nuclear element are discussed and found to be small enough to set the boundary for hln Ai. A comparison of our result with recent Icecube data suggests that the primary mass composition is dominated by carbon at 1015 eV and it tends to be dominated by iron at 1016 eV.

KW - Chemical composition

KW - Knee

KW - Tibet hybrid experiment

UR - http://www.scopus.com/inward/record.url?scp=85052368685&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052368685&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:85052368685

VL - 2013-October

BT - Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013

PB - Sociedade Brasileira de Fisica

ER -