Abstract
Recently, a deep beamforming (BF) network was proposed to predict BF weights from phase-carrying features, such as generalized cross correlation (GCC). The BF network is trained jointly with the acoustic model to minimize automatic speech recognition (ASR) cost function. In this paper, we propose to replace GCC with features derived from input signals' spatial covariance matrices (SCM), which contain the phase information of individual frequency bands. Experimental results on the AMI meeting transcription task shows that the BF network using SCM features significantly reduces the word error rate to 44.1% from 47.9% obtained with the conventional ASR pipeline using delay-and-sum BF. Also compared with GCC features, we have observed small but steady gain by 0.6% absolutely. The use of SCM features also facilitate the implementation of more advanced BF methods within a deep learning framework, such as minimum variance distortionless response BF that requires the speech and noise SCM.
Original language | English |
---|---|
Title of host publication | 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9789881476821 |
DOIs | |
Publication status | Published - 2017 Jan 17 |
Externally published | Yes |
Event | 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 - Jeju, Korea, Republic of Duration: 2016 Dec 13 → 2016 Dec 16 |
Other
Other | 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 |
---|---|
Country/Territory | Korea, Republic of |
City | Jeju |
Period | 16/12/13 → 16/12/16 |
ASJC Scopus subject areas
- Artificial Intelligence
- Computer Science Applications
- Information Systems
- Signal Processing