Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation

Antonios P. Antoniadis, Peter Mortier, Ghassan Kassab, Gabriele Dubini, Nicolas Foin, Yoshinobu Murasato, Andreas A. Giannopoulos, Shengxian Tu, Kiyotaka Iwasaki, Yutaka Hikichi, Francesco Migliavacca, Claudio Chiastra, Jolanda J. Wentzel, Frank Gijsen, Johan H C Reiber, Peter Barlis, Patrick W. Serruys, Deepak L. Bhatt, Goran Stankovic, Elazer R. EdelmanGeorge D. Giannoglou, Yves Louvard, Yiannis S. Chatzizisis

    Research output: Contribution to journalArticle

    35 Citations (Scopus)

    Abstract

    Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.

    Original languageEnglish
    Article number2103
    Pages (from-to)1281-1296
    Number of pages16
    JournalJACC: Cardiovascular Interventions
    Volume8
    Issue number10
    DOIs
    Publication statusPublished - 2015 Aug 24

    Fingerprint

    Stents
    Coronary Vessels
    Percutaneous Coronary Intervention
    Thrombosis
    Therapeutics

    Keywords

    • bifurcation
    • biomechanical stress
    • coronary artery disease
    • endothelial shear stress
    • stent(s)

    ASJC Scopus subject areas

    • Cardiology and Cardiovascular Medicine

    Cite this

    Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting : Expert Review Document on Techniques and Clinical Implementation. / Antoniadis, Antonios P.; Mortier, Peter; Kassab, Ghassan; Dubini, Gabriele; Foin, Nicolas; Murasato, Yoshinobu; Giannopoulos, Andreas A.; Tu, Shengxian; Iwasaki, Kiyotaka; Hikichi, Yutaka; Migliavacca, Francesco; Chiastra, Claudio; Wentzel, Jolanda J.; Gijsen, Frank; Reiber, Johan H C; Barlis, Peter; Serruys, Patrick W.; Bhatt, Deepak L.; Stankovic, Goran; Edelman, Elazer R.; Giannoglou, George D.; Louvard, Yves; Chatzizisis, Yiannis S.

    In: JACC: Cardiovascular Interventions, Vol. 8, No. 10, 2103, 24.08.2015, p. 1281-1296.

    Research output: Contribution to journalArticle

    Antoniadis, AP, Mortier, P, Kassab, G, Dubini, G, Foin, N, Murasato, Y, Giannopoulos, AA, Tu, S, Iwasaki, K, Hikichi, Y, Migliavacca, F, Chiastra, C, Wentzel, JJ, Gijsen, F, Reiber, JHC, Barlis, P, Serruys, PW, Bhatt, DL, Stankovic, G, Edelman, ER, Giannoglou, GD, Louvard, Y & Chatzizisis, YS 2015, 'Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation', JACC: Cardiovascular Interventions, vol. 8, no. 10, 2103, pp. 1281-1296. https://doi.org/10.1016/j.jcin.2015.06.015
    Antoniadis, Antonios P. ; Mortier, Peter ; Kassab, Ghassan ; Dubini, Gabriele ; Foin, Nicolas ; Murasato, Yoshinobu ; Giannopoulos, Andreas A. ; Tu, Shengxian ; Iwasaki, Kiyotaka ; Hikichi, Yutaka ; Migliavacca, Francesco ; Chiastra, Claudio ; Wentzel, Jolanda J. ; Gijsen, Frank ; Reiber, Johan H C ; Barlis, Peter ; Serruys, Patrick W. ; Bhatt, Deepak L. ; Stankovic, Goran ; Edelman, Elazer R. ; Giannoglou, George D. ; Louvard, Yves ; Chatzizisis, Yiannis S. / Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting : Expert Review Document on Techniques and Clinical Implementation. In: JACC: Cardiovascular Interventions. 2015 ; Vol. 8, No. 10. pp. 1281-1296.
    @article{91c936c6a2704a56b18c6e3884e76e68,
    title = "Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation",
    abstract = "Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.",
    keywords = "bifurcation, biomechanical stress, coronary artery disease, endothelial shear stress, stent(s)",
    author = "Antoniadis, {Antonios P.} and Peter Mortier and Ghassan Kassab and Gabriele Dubini and Nicolas Foin and Yoshinobu Murasato and Giannopoulos, {Andreas A.} and Shengxian Tu and Kiyotaka Iwasaki and Yutaka Hikichi and Francesco Migliavacca and Claudio Chiastra and Wentzel, {Jolanda J.} and Frank Gijsen and Reiber, {Johan H C} and Peter Barlis and Serruys, {Patrick W.} and Bhatt, {Deepak L.} and Goran Stankovic and Edelman, {Elazer R.} and Giannoglou, {George D.} and Yves Louvard and Chatzizisis, {Yiannis S.}",
    year = "2015",
    month = "8",
    day = "24",
    doi = "10.1016/j.jcin.2015.06.015",
    language = "English",
    volume = "8",
    pages = "1281--1296",
    journal = "JACC: Cardiovascular Interventions",
    issn = "1936-8798",
    publisher = "Elsevier Inc.",
    number = "10",

    }

    TY - JOUR

    T1 - Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting

    T2 - Expert Review Document on Techniques and Clinical Implementation

    AU - Antoniadis, Antonios P.

    AU - Mortier, Peter

    AU - Kassab, Ghassan

    AU - Dubini, Gabriele

    AU - Foin, Nicolas

    AU - Murasato, Yoshinobu

    AU - Giannopoulos, Andreas A.

    AU - Tu, Shengxian

    AU - Iwasaki, Kiyotaka

    AU - Hikichi, Yutaka

    AU - Migliavacca, Francesco

    AU - Chiastra, Claudio

    AU - Wentzel, Jolanda J.

    AU - Gijsen, Frank

    AU - Reiber, Johan H C

    AU - Barlis, Peter

    AU - Serruys, Patrick W.

    AU - Bhatt, Deepak L.

    AU - Stankovic, Goran

    AU - Edelman, Elazer R.

    AU - Giannoglou, George D.

    AU - Louvard, Yves

    AU - Chatzizisis, Yiannis S.

    PY - 2015/8/24

    Y1 - 2015/8/24

    N2 - Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.

    AB - Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.

    KW - bifurcation

    KW - biomechanical stress

    KW - coronary artery disease

    KW - endothelial shear stress

    KW - stent(s)

    UR - http://www.scopus.com/inward/record.url?scp=84940388438&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84940388438&partnerID=8YFLogxK

    U2 - 10.1016/j.jcin.2015.06.015

    DO - 10.1016/j.jcin.2015.06.015

    M3 - Article

    C2 - 26315731

    AN - SCOPUS:84940388438

    VL - 8

    SP - 1281

    EP - 1296

    JO - JACC: Cardiovascular Interventions

    JF - JACC: Cardiovascular Interventions

    SN - 1936-8798

    IS - 10

    M1 - 2103

    ER -