Calcium-aluminum-rich inclusions in enstatite chondrites (I)

Mineralogy and textures

Timothy Jay Fagan, A. N. Krot, K. Keil

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Like calcium-aluminum-rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti-diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na-(±Cl)-rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark-Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100 μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite-rich types, and presence of primary Ti-(±V)-oxides, and secondry geikelite and Ti,Fe-sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high-temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite-chondrite-forming regions or (2) O fugacities fluctuated within the enstatite-chondrite-forming region. In contrast, secondary geikelite and Ti-Fe-sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent-body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.

Original languageEnglish
Pages (from-to)771-781
Number of pages11
JournalMeteoritics and Planetary Science
Volume35
Issue number4
Publication statusPublished - 2000
Externally publishedYes

Fingerprint

enstatite chondrite
enstatite
chondrites
mineralogy
calcium
textures
aluminum
texture
inclusions
perovskite
hibonite
chondrite
minerals
refractories
fugacity
spinel
sulfides
mineral
sulfide
melilite

ASJC Scopus subject areas

  • Geophysics

Cite this

Calcium-aluminum-rich inclusions in enstatite chondrites (I) : Mineralogy and textures. / Fagan, Timothy Jay; Krot, A. N.; Keil, K.

In: Meteoritics and Planetary Science, Vol. 35, No. 4, 2000, p. 771-781.

Research output: Contribution to journalArticle

@article{ee7b2ad0957541c2be2689590c3e77d7,
title = "Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures",
abstract = "Like calcium-aluminum-rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti-diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na-(±Cl)-rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark-Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100 μm), low abundance (<1{\%} by mode in thin section), occurrence of only spinel or hibonite-rich types, and presence of primary Ti-(±V)-oxides, and secondry geikelite and Ti,Fe-sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high-temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite-chondrite-forming regions or (2) O fugacities fluctuated within the enstatite-chondrite-forming region. In contrast, secondary geikelite and Ti-Fe-sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent-body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.",
author = "Fagan, {Timothy Jay} and Krot, {A. N.} and K. Keil",
year = "2000",
language = "English",
volume = "35",
pages = "771--781",
journal = "Meteoritics and Planetary Science",
issn = "1086-9379",
publisher = "The University of Arkansas Press",
number = "4",

}

TY - JOUR

T1 - Calcium-aluminum-rich inclusions in enstatite chondrites (I)

T2 - Mineralogy and textures

AU - Fagan, Timothy Jay

AU - Krot, A. N.

AU - Keil, K.

PY - 2000

Y1 - 2000

N2 - Like calcium-aluminum-rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti-diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na-(±Cl)-rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark-Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100 μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite-rich types, and presence of primary Ti-(±V)-oxides, and secondry geikelite and Ti,Fe-sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high-temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite-chondrite-forming regions or (2) O fugacities fluctuated within the enstatite-chondrite-forming region. In contrast, secondary geikelite and Ti-Fe-sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent-body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.

AB - Like calcium-aluminum-rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti-diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na-(±Cl)-rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark-Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100 μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite-rich types, and presence of primary Ti-(±V)-oxides, and secondry geikelite and Ti,Fe-sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high-temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite-chondrite-forming regions or (2) O fugacities fluctuated within the enstatite-chondrite-forming region. In contrast, secondary geikelite and Ti-Fe-sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent-body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.

UR - http://www.scopus.com/inward/record.url?scp=0033882777&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033882777&partnerID=8YFLogxK

M3 - Article

VL - 35

SP - 771

EP - 781

JO - Meteoritics and Planetary Science

JF - Meteoritics and Planetary Science

SN - 1086-9379

IS - 4

ER -