Call admission control on single node networks under output rate-controlled generalized processor sharing (ORC-GPS) scheduler

Masaki Hanada, Hidenori Nakazato, Hitoshi Watanabe

Research output: Contribution to journalArticlepeer-review

Abstract

Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packetswitched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

Original languageEnglish
Pages (from-to)401-414
Number of pages14
JournalIEICE Transactions on Communications
VolumeE95-B
Issue number2
DOIs
Publication statusPublished - 2012 Feb

Keywords

  • Call admission control
  • Deterministic delay guarantee
  • Generalized processor sharing
  • Output rate-controlled generalized processor sharing
  • QoS

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Call admission control on single node networks under output rate-controlled generalized processor sharing (ORC-GPS) scheduler'. Together they form a unique fingerprint.

Cite this