Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training

Kentaro Kawanaka*, Izumi Tabata, Shigeru Katsuta, Mitsuru Higuchi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

After running training, which increased GLUT-4 protein content in rat skeletal muscle by <40% compared with control rats, the training effect on insulin-stimulated maximal glucose transport (insulin responsiveness) in skeletal muscle was short lived (24 h). A recent study reported that GLUT-4 protein content in rat epitrochlearis muscle increased dramatically (~2- fold) after swimming training (J.-M. Ren, C. F. Semenkovich, E. A. Gulve, J. Gao, and J. O. Holloszy. J. Biol. Chem. 269, 14396-14401, 1994). Because GLUT-4 protein content is known to be closely related to skeletal muscle insulin responsiveness, we thought it possible that the training effect on insulin responsiveness may remain for >24 h after swimming training if GLUT- 4 protein content decreases gradually from the relatively high level and still remains higher than control level for >24 h after swimming training. Therefore, we examined this possibility. Male Sprague-Dawley rats swam 2 h a day for 5 days with a weight equal to 2% of body mass. Approximately 18, 42, and 90 h after cessation of training, GLUT-4 protein concentration and 2- [1,2-3H]deoxy-D-glucose transport in the presence of a maximally stimulating concentration of insulin (2 mU/ml) were examined by using incubated epitrochlearis muscle preparation. Swimming training increased GLUT-4 protein concentration and insulin responsiveness by 87 and 85%, respectively, relative to age-matched controls when examined 18 h after training. Forty- two hours after training, GLUT-4 protein concentration and insulin responsiveness were still higher by 52 and 51%, respectively, in muscle from trained rats compared with control. GLUT-4 protein concentration and insulin responsiveness in trained muscle returned to sedentary control level within 90 h after training. We conclude that 1) the change in insulin responsiveness during detraining is directly related to muscle GLUT-4 protein content, and 2) consequently, the greater the increase in GLUT-4 protein content that is induced by training, the longer an effect on insulin responsiveness persists after the training.

Original languageEnglish
Pages (from-to)2043-2047
Number of pages5
JournalJournal of Applied Physiology
Volume83
Issue number6
Publication statusPublished - 1997 Dec
Externally publishedYes

Keywords

  • Detraining
  • Epitrochlearis
  • Insulin responsiveness
  • Isolated muscle incubation

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint

Dive into the research topics of 'Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training'. Together they form a unique fingerprint.

Cite this