TY - GEN
T1 - Characteristic features of the modulated structure appearing in the multiferroic material Bi1-xSmxFeO3 around x = 0.15
AU - Nomoto, Masashi
AU - Inoshita, Takumi
AU - Inoue, Yasuhide
AU - Horibe, Yoichi
AU - Koyama, Yasumasa
N1 - Publisher Copyright:
© 2017 Trans Tech Publications, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - In Bi1-xSmxFeO3 (BSFO) having the multiferroic BiFeO3 as an end material, when the Sm content increases from x = 0, it has been reported that the ferroelectric-R3c state is changed into the paraelectric-Pnma state around x = 0.14. The R3c/Pnma state boundary around x = 0.14 can be regarded as a temperature-independent morphotropic-phase boundary (MPB). The notable feature in BSFO is that, in addition to these two states, the antiferroelectric PbZrO3-type state was also found in the vicinity of the MPB. Although the PbZrO3-type state appears as a modulated structure, its detailed features have not been understood yet. We have thus examined the crystallographic features of prepared BSFO samples around x = 0.14, mainly by transmission electron microscopy. The PbZrO3-type state was confirmed to be present in samples with x = 0.15 on the basis of x-ray powder diffraction profiles measured from prepared samples at 300 K. On the other hand, the observation made by transmission electron microscopy indicated that the state for x = 0.15 is characterized by a coexistence state consisting of the ferroelectric-R3c and antiferroelectric PbZrO3-type states. In particular, the crystal structure of the PbZrO3-type state could be identified as a modulated structure with two transverse modulation waves, whose wave vectors are given by qi = [1/2 0 0]o and q2 = [0 1/2 0]o in the orthorhombic-Pnma notation. In addition, eigenvectors of these two transverse waves were also determined to be parallel to the same [001]o direction.
AB - In Bi1-xSmxFeO3 (BSFO) having the multiferroic BiFeO3 as an end material, when the Sm content increases from x = 0, it has been reported that the ferroelectric-R3c state is changed into the paraelectric-Pnma state around x = 0.14. The R3c/Pnma state boundary around x = 0.14 can be regarded as a temperature-independent morphotropic-phase boundary (MPB). The notable feature in BSFO is that, in addition to these two states, the antiferroelectric PbZrO3-type state was also found in the vicinity of the MPB. Although the PbZrO3-type state appears as a modulated structure, its detailed features have not been understood yet. We have thus examined the crystallographic features of prepared BSFO samples around x = 0.14, mainly by transmission electron microscopy. The PbZrO3-type state was confirmed to be present in samples with x = 0.15 on the basis of x-ray powder diffraction profiles measured from prepared samples at 300 K. On the other hand, the observation made by transmission electron microscopy indicated that the state for x = 0.15 is characterized by a coexistence state consisting of the ferroelectric-R3c and antiferroelectric PbZrO3-type states. In particular, the crystal structure of the PbZrO3-type state could be identified as a modulated structure with two transverse modulation waves, whose wave vectors are given by qi = [1/2 0 0]o and q2 = [0 1/2 0]o in the orthorhombic-Pnma notation. In addition, eigenvectors of these two transverse waves were also determined to be parallel to the same [001]o direction.
KW - Antiferroelectric state
KW - BiSmFeO
KW - Multiferroic material
KW - Transmission electron microscopy
UR - http://www.scopus.com/inward/record.url?scp=85000733359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85000733359&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.879.1393
DO - 10.4028/www.scientific.net/MSF.879.1393
M3 - Conference contribution
AN - SCOPUS:85000733359
SN - 9783035711295
T3 - Materials Science Forum
SP - 1393
EP - 1398
BT - THERMEC 2016
A2 - Sommitsch, Christof
A2 - Ionescu, Mihail
A2 - Mishra, Brajendra
A2 - Mishra, Brajendra
A2 - Kozeschnik, Ernst
A2 - Chandra, T.
PB - Trans Tech Publications Ltd
T2 - 9th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2016
Y2 - 29 May 2016 through 3 June 2016
ER -