Chemical potential shift in overdoped and underdoped La2-xSrxCuO4

A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, H. Eisaki, S. Uchida, T. Kimura, T. Sasagawa, K. Kishio

Research output: Contribution to journalArticlepeer-review

204 Citations (Scopus)

Abstract

The downward shift of the electron chemical potential μ with hole doping in La2-xSrxCuO4 has been deduced from the shifts of photoemission and inverse-photoemission spectra. While the shift is large (∼1.5eV/hole) in overdoped samples, it is suppressed (<0.2 eV/hole) in underdoped samples, implying a divergent charge susceptibility near the metal-insulator transition. In the overdoped regime, the μ and the electronic specific heat coefficient γ are consistently explained within Fermi-liquid theory, whereas the same analysis gives unphysical results in the underdoped regime, indicating the breakdown of the Fermi-liquid picture in the underdoped regime.

Original languageEnglish
Pages (from-to)2101-2104
Number of pages4
JournalPhysical Review Letters
Volume79
Issue number11
DOIs
Publication statusPublished - 1997 Sept 15
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Chemical potential shift in overdoped and underdoped La2-xSrxCuO4'. Together they form a unique fingerprint.

Cite this