### Abstract

We give a complete characterization of a circle immersion that can be divided into two arc embeddings in terms of its chord diagram.

Original language | English |
---|---|

Pages (from-to) | 743-751 |

Number of pages | 9 |

Journal | Proceedings of the American Mathematical Society |

Volume | 138 |

Issue number | 2 |

DOIs | |

Publication status | Published - 2010 Feb |

### Fingerprint

### Keywords

- Chord diagram
- Circle immersion
- Knot projection
- Plane curve

### ASJC Scopus subject areas

- Mathematics(all)
- Applied Mathematics

### Cite this

**Circle immersions that can be divided into two arc embeddings.** / Taniyama, Kouki.

Research output: Contribution to journal › Article

*Proceedings of the American Mathematical Society*, vol. 138, no. 2, pp. 743-751. https://doi.org/10.1090/S0002-9939-09-10140-5

}

TY - JOUR

T1 - Circle immersions that can be divided into two arc embeddings

AU - Taniyama, Kouki

PY - 2010/2

Y1 - 2010/2

N2 - We give a complete characterization of a circle immersion that can be divided into two arc embeddings in terms of its chord diagram.

AB - We give a complete characterization of a circle immersion that can be divided into two arc embeddings in terms of its chord diagram.

KW - Chord diagram

KW - Circle immersion

KW - Knot projection

KW - Plane curve

UR - http://www.scopus.com/inward/record.url?scp=77951452571&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951452571&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-09-10140-5

DO - 10.1090/S0002-9939-09-10140-5

M3 - Article

AN - SCOPUS:77951452571

VL - 138

SP - 743

EP - 751

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 2

ER -