TY - JOUR
T1 - Comparing Treatments of Weak Reactions with Nuclei in Simulations of Core-collapse Supernovae
AU - Nagakura, Hiroki
AU - Furusawa, Shun
AU - Togashi, Hajime
AU - Richers, Sherwood
AU - Sumiyoshi, Kohsuke
AU - Yamada, Shoichi
N1 - Funding Information:
We acknowledge Adam Burrows, Christian D. Ott, Andre da Silva Schneider, Tomoya Takiwaki, and Satoshi X. Nakamura for fruitful discussions. The numerical computations were performed on the supercomputers at K, at AICS, FX10 at Information Technology Center of Tokyo University. We also acknowledge Cray XC40 at YITP of Kyoto University and SR16000 at KEK under the support of its Large Scale Simulation Program (16/17-11), Research Center for Nuclear Physics (RCNP) at Osaka University and the PC cluster at the Center for Computational Astrophysics, National Astronomical Observatory of Japan for code development and checks. Large-scale storage of numerical data is supported by JLDG constructed over SINET4 of NII. H.N. was supported in part by JSPS Postdoctoral Fellowships for Research Abroad No. 27-348, Caltech through NSF award No. TCAN AST-1333520, and Princeton University through DOE SciDAC4 Grant DE-SC0018297 (subaward 00009650). S.R. was supported by the N3AS Fellowship through the National Science Foundation, grant PHY-1630782, and the Heising-Simons Foundation, grant 2017-228. This work was also supported by Grant-in-Aid for the Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan (15K05093, 24103006, 24740165, 24244036, 25870099, 26104006, 16H03986, 17H06357, 17H06365), HPCI Strategic Program of Japanese MEXT and K computer at the RIKEN (Project ID: hpci 160071, 160211, 170230, 170031, 170304, hp180179, hp180111) and the RIKEN iTHEMS Project.
Publisher Copyright:
© 2019. The American Astronomical Society.
PY - 2019/2
Y1 - 2019/2
N2 - We perform an extensive study of the influence of nuclear weak interactions on core-collapse supernovae, paying particular attention to consistency between nuclear abundances in the equation of state (EOS) and nuclear weak interactions. We compute properties of uniform matter based on the variational method. For inhomogeneous nuclear matter, we take a full ensemble of nuclei into account with various finite-density and thermal effects and directly use the nuclear abundances to compute nuclear weak interaction rates. To quantify the impact of a consistent treatment of nuclear abundances on CCSN dynamics, we carry out spherically symmetric CCSN simulations with full Boltzmann neutrino transport, systematically changing the treatment of weak interactions, EOSs, and progenitor models. We find that the inconsistent treatment of nuclear abundances between the EOS and weak interaction rates weakens the EOS dependence of both the dynamics and neutrino signals. We also test the validity of two artificial prescriptions for weak interactions of light nuclei and find that both prescriptions affect the dynamics. Furthermore, there are differences in neutrino luminosities by ∼10% and in average neutrino energies by 0.25-1 MeV from those of the fiducial model. We also find that the neutronization burst neutrino signal depends on the progenitor more strongly than on the EOS, preventing a detection of this signal from constraining the EOS.
AB - We perform an extensive study of the influence of nuclear weak interactions on core-collapse supernovae, paying particular attention to consistency between nuclear abundances in the equation of state (EOS) and nuclear weak interactions. We compute properties of uniform matter based on the variational method. For inhomogeneous nuclear matter, we take a full ensemble of nuclei into account with various finite-density and thermal effects and directly use the nuclear abundances to compute nuclear weak interaction rates. To quantify the impact of a consistent treatment of nuclear abundances on CCSN dynamics, we carry out spherically symmetric CCSN simulations with full Boltzmann neutrino transport, systematically changing the treatment of weak interactions, EOSs, and progenitor models. We find that the inconsistent treatment of nuclear abundances between the EOS and weak interaction rates weakens the EOS dependence of both the dynamics and neutrino signals. We also test the validity of two artificial prescriptions for weak interactions of light nuclei and find that both prescriptions affect the dynamics. Furthermore, there are differences in neutrino luminosities by ∼10% and in average neutrino energies by 0.25-1 MeV from those of the fiducial model. We also find that the neutronization burst neutrino signal depends on the progenitor more strongly than on the EOS, preventing a detection of this signal from constraining the EOS.
KW - hydrodynamics
KW - neutrinos
KW - supernovae: general
UR - http://www.scopus.com/inward/record.url?scp=85062616781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062616781&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/aafac9
DO - 10.3847/1538-4365/aafac9
M3 - Article
AN - SCOPUS:85062616781
SN - 0067-0049
VL - 240
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 2
M1 - 38
ER -