## Abstract

Using a variational Monte Carlo method, we study the competition of strong electron-electron and electron-phonon interactions in the ground state of the Holstein-Hubbard model on a square lattice. At half filling, an extended intermediate metallic or weakly superconducting (SC) phase emerges, sandwiched between antiferromagnetic and charge order (CO) insulating phases. By carrier doping into the CO insulator, the SC order dramatically increases for strong electron-phonon couplings, but is largely hampered by wide phase separation (PS) regions. Superconductivity is optimized at the border to the PS.

Original language | English |
---|---|

Article number | 197001 |

Journal | Physical Review Letters |

Volume | 119 |

Issue number | 19 |

DOIs | |

Publication status | Published - 2017 Nov 8 |

## ASJC Scopus subject areas

- Physics and Astronomy(all)

## Fingerprint Dive into the research topics of 'Competition among Superconducting, Antiferromagnetic, and Charge Orders with Intervention by Phase Separation in the 2D Holstein-Hubbard Model'. Together they form a unique fingerprint.

## Cite this

- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS

**Competition among Superconducting, Antiferromagnetic, and Charge Orders with Intervention by Phase Separation in the 2D Holstein-Hubbard Model.** / Ohgoe, Takahiro; Imada, Masatoshi.

Research output: Contribution to journal › Article › peer-review

**Competition among Superconducting, Antiferromagnetic, and Charge Orders with Intervention by Phase Separation in the 2D Holstein-Hubbard Model**. In: Physical Review Letters. 2017 ; Vol. 119, No. 19.

}

TY - JOUR

T1 - Competition among Superconducting, Antiferromagnetic, and Charge Orders with Intervention by Phase Separation in the 2D Holstein-Hubbard Model

AU - Ohgoe, Takahiro

AU - Imada, Masatoshi

N1 - Funding Information: We now study the doped region. In Fig. 4 , we first present our ground-state phase diagram at U = 0 in the δ - λ plane for Ω = 8 t and Ω = t , because the U = 0 phase diagram captures an essential aspect. For U = 0 , the effective interaction U eff ( ω ) has negative parts for ω < Ω , which lead to s -wave SC states except for the gapped CO phase at half filling. In our phase diagram, the SC + CO phase is absent. Instead, the PS region appears adjacent to the CO phase at half filling. We find that for the smaller phonon frequency, the PS region is enlarged. In the Supplemental Material [38] , we present the phase diagram in the adiabatic limit as the extreme case. In Fig. 4 , we also plot S c ( π , π ) / N and the long-range part of the s -wave SC correlation function P s ∞ , which is defined by P s ∞ = ( 1 / M ) ∑ 2 L / 4 < | r | P s ( r ) . Here, r is the relative position vectors belonging to ( - L / 2 , L / 2 ] 2 , M is the number of vectors satisfying 2 L / 4 < | r | < 2 L / 2 , and the SC function P s ( r ) is defined by P s ( r ) = ( 1 / N ) ∑ r i ⟨ Δ s † ( r i ) Δ s ( r i + r ) ⟩ with the order parameter Δ s ( r i ) = c r i ↑ c r i ↓ . 4 10.1103/PhysRevLett.119.197001.f4 FIG. 4. Ground-state phase diagrams of the Holstein model in the δ - λ plane at (a) Ω = 8 t and (b) Ω = t . In the vertical axis, S c ( π , π ) / N (red squares) and P s ∞ (color plots) for L = 14 are plotted in the CO and SC phases, respectively. Black squares in the bottom plane represent boundaries between the PS and s -wave SC regions. White areas denote the PS regions. Thick red lines at δ = 0 indicate the CO phase. In Fig. 5(a) , we show physical quantities which were used to determine the phase diagrams in Fig. 4 in an example at ( Ω / t , U / t , λ ) = ( 8 , 0 , 0.3 ) . We also show an interacting case for ( Ω / t , U / t , λ ) = ( 8 , 8 , 1.3 ) in Fig. 5(b) for comparison. Since the model is mapped, in the antiadiabatic limit, to the standard Hubbard model with the on-site interaction U eff = U - W λ , the comparison between the interacting and noninteracting cases with the same U eff may provide us with insight for large Ω . The cases shown in Figs. 5(a) and 5(b) indeed have the same U eff = - 2.4 . The value of S c ( π , π ) / N decreases monotonically and the CO eventually disappears at δ ≃ 0.1 and 0.2 for U / t = 0 [Fig. 5(a) ] and U / t = 8 [Fig. 5(b) ], respectively. On the other hand, the value of P s ∞ increases as δ increases and we clearly observe the SC phase. For small δ , a CO order and an s -wave SC order coexist. By the Maxwell construction for the δ - μ curve, however, we find that the SC + CO phase is swallowed up by the PS region ( 0 < δ < 0.14 for U / t = 0 and 0 < δ < 0.37 for U / t = 8 ). Here, μ is the chemical potential which was calculated by μ ( N ¯ e ) = [ E ( N e ) - E ( N e ′ ) ] / ( N e - N e ′ ) . Here, E is the total energy, ( N e , N e ′ ) are the electron numbers, and we obtain the chemical potential at the mid filling N ¯ e = ( N e + N e ′ ) / 2 . Our Hamiltonian has the particle-hole symmetry at μ = - 8 λ - U / 2 = - 2.4 and - 6.4 for Figs. 5(a) and 5(b) , respectively. Since this value is above the line used for the Maxwell construction, there is a charge gap at half filling. For the interacting case Fig. 5(b) , the charge gap is even larger. We also present the negative inverse uniform charge susceptibility - χ c - 1 = d μ / d ρ in Fig. 5 . In our model, the spinodal point δ s , where the uniform charge susceptibility diverges ( χ c - 1 = 0 ), coincides with the critical point of the CO and, therefore, the PS is driven by the CO (see also the results for the adiabatic limit in the Supplemental Material [38] ). 5 10.1103/PhysRevLett.119.197001.f5 FIG. 5. Physical quantities S c ( π , π ) / N , P s ∞ , μ , and - χ c - 1 as functions of doping δ at (a) ( Ω / t , U / t , λ ) = ( 8 , 0 , 0.3 ) and (b) (8, 8, 1.3), respectively. The shaded area denotes the PS region, which was determined by the Maxwell construction. The dashed horizontal line in the middle panel is used for the Maxwell construction. The curves of - χ c - 1 were derived from the derivative of the μ - δ curves (black curves) which were obtained by the seventh-order polynomial fit. The spinodal points δ s are indicated as the arrows. Comparisons between Figs. 5(a) and 5(b) show a quantitative difference that the CO (SC) orders are enhanced (suppressed) for large U / t . However, we find a universal common feature both in Figs. 5(a) and 5(b) ; a clear one-to-one correspondence among the peak of the SC order, the spinodal point, and the border of the CO phase thus indicates tight connections of the mechanism of the SC, CO, and uniform charge instability. The strong effective attractive interaction of carriers is certainly the key, because it causes all of these three properties. The strong attraction is caused by the electron-phonon interaction here, while the resultant charge fluctuations may also work as additional glue of the Cooper pair. The same trend between the enhancement of the s -wave SC and the uniform charge susceptibility has been reported for d -wave SC in the Hubbard model [15] and extended s -wave SC in the ab initio effective Hamiltonian for LaFeAsO [21] as well. To summarize, by studying the ground states of the Holstein-Hubbard model on a square lattice, we have clarified where the s -wave SC is enhanced in the phase diagram. At half filling, we have found an intermediate metallic or weakly SC region sandwiched by the CO and AF phases. In the doped case, the SC is dramatically enhanced, but a wide PS region triggered by the CO largely hinders the SC and completely preempts the SC + CO phase. We have revealed that the SC is optimized at the border of the PS. These findings have been obtained by the VMC method extended for electron-phonon coupled systems. Our method is quite flexible, and therefore it will be also useful to study more complicated systems such as ab initio Hamiltonians of high- T c cuprates, where several different phonon modes are present. We thank Kota Ido for useful discussions. T. O. also thanks Yuta Murakami for discussions. The code was developed based on the open-source software m vmc [48] . This work is financially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) High Performance Computing Infrastructure (HPCI) Strategic Programs for Innovative Research (SPIRE), the Computational Materials Science Initiative (CMSI), and Creation of New Functional Devices and High-Performance Materials to Support Next Generation Industries (CDMSI). This work was also supported by a Grant-in-Aid for Scientific Research (Grants No. 22104010, No. 22340090, and No. 16H06345) from MEXT, Japan. The simulations were partially performed on the K computer provided by the RIKEN Advanced Institute for Computational Science under the HPCI System Research project (Projects No. hp130007, No. hp140215, No. hp150211, No. hp160201, and No. hp170263). The simulations were also performed on computers at the Supercomputer Center, Institute for Solid State Physics, University of Tokyo. [1] 1 A. Y. Ganin , Y. Takabayashi , P. Jeglič , D. Arčon , A. Potočnik , P. J. Baker , Y. Ohishi , M. T. McDonald , M. D. Tzirakis , A. McLennan , Nature (London) 466 , 221 ( 2010 ). NATUAS 0028-0836 10.1038/nature09120 [2] 2 M. Capone , M. Fabrizio , C. Castellani , and E. Tosatti , Science 296 , 2364 ( 2002 ). SCIEAS 0036-8075 10.1126/science.1071122 [3] 3 Y. Nomura , S. Sakai , M. Capone , and R. Arita , Sci. Adv. 1 , e1500568 ( 2015 ). SACDAF 2375-2548 10.1126/sciadv.1500568 [4] 4 A. Lanzara , P. V. Pogdanov , X. J. Zhou , S. A. Kellar , D. L. Feng , E. D. Lu , T. Yoshida , H. Eisaki , A. Fujimori , K. Kishio , Nature (London) 412 , 510 ( 2001 ). NATUAS 0028-0836 10.1038/35087518 [5] 5 Z. B. Huang , W. Hanke , E. Arrigoni , and D. J. Scalapino , Phys. Rev. B 68 , 220507(R) ( 2003 ). PRBMDO 0163-1829 10.1103/PhysRevB.68.220507 [6] 6 S. Ishihara and N. Nagaosa , Phys. Rev. B 69 , 144520 ( 2004 ). PRBMDO 0163-1829 10.1103/PhysRevB.69.144520 [7] 7 S. Johnston , I. M. Vishik , W. S. Lee , F. Schmitt , S. Uchida , K. Fujita , S. Ishida , N. Nagaosa , Z. X. Shen , and T. P. Devereaux , Phys. Rev. Lett. 108 , 166404 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.108.166404 [8] 8 D. Ceperley , G. V. Chester , and M. H. Kalos , Phys. Rev. B 16 , 3081 ( 1977 ). PLRBAQ 0556-2805 10.1103/PhysRevB.16.3081 [9] 9 H. Yokoyama and H. Shiba , J. Phys. Soc. Jpn. 80 , 084607 ( 2011 ). JUPSAU 0031-9015 10.1143/JPSJ.80.084607 [10] 10 M. Capello , F. Becca , M. Fabrizio , S. Sorella , and E. Tosatti , Phys. Rev. Lett. 94 , 026406 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.94.026406 [11] 11 S. Sorella , Phys. Rev. B 64 , 024512 ( 2001 ). PRBMDO 0163-1829 10.1103/PhysRevB.64.024512 [12] 12 S. Sorella , Phys. Rev. B 71 , 241103(R) ( 2005 ). PRBMDO 1098-0121 10.1103/PhysRevB.71.241103 [13] 13 D. Tahara and M. Imada , J. Phys. Soc. Jpn. 77 , 114701 ( 2008 ). JUPSAU 0031-9015 10.1143/JPSJ.77.114701 [14] 14 R. Kaneko , S. Morita , and M. Imada , J. Phys. Soc. Jpn. 83 , 093707 ( 2014 ). JUPSAU 0031-9015 10.7566/JPSJ.83.093707 [15] 15 T. Misawa and M. Imada , Phys. Rev. B 90 , 115137 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.115137 [16] 16 S. Morita , R. Kaneko , and M. Imada , J. Phys. Soc. Jpn. 84 , 024720 ( 2015 ). JUPSAU 0031-9015 10.7566/JPSJ.84.024720 [17] 17 M. Kurita , Y. Yamaji , S. Morita , and M. Imada , Phys. Rev. B 92 , 035122 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.035122 [18] 18 L. F. Tocchio , F. Becca , A. Parola , and S. Sorella , Phys. Rev. B 78 , 041101 ( 2008 ). PRBMDO 1098-0121 10.1103/PhysRevB.78.041101 [19] 19 L. F. Tocchio , F. Becca , and C. Gros , Phys. Rev. B 83 , 195138 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.195138 [20] 20 H. Shinaoka , T. Misawa , K. Nakamura , and M. Imada , J. Phys. Soc. Jpn. 81 , 034701 ( 2012 ). JUPSAU 0031-9015 10.1143/JPSJ.81.034701 [21] 21 T. Misawa and M. Imada , Nat. Commun. 5 , 5738 ( 2014 ). NCAOBW 2041-1723 10.1038/ncomms6738 [22] 22 M. Hirayama , T. Misawa , T. Miyake , and M. Imada , J. Phys. Soc. Jpn. 84 , 093703 ( 2015 ). JUPSAU 0031-9015 10.7566/JPSJ.84.093703 [23] 23 T. Ohgoe and M. Imada , Phys. Rev. B 89 , 195139 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.89.195139 [24] 24 R. T. Clay and R. P. Hardikar , Phys. Rev. Lett. 95 , 096401 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.95.096401 [25] 25 M. Tezuka , R. Arita , and H. Aoki , Phys. Rev. B 76 , 155114 ( 2007 ). PRBMDO 1098-0121 10.1103/PhysRevB.76.155114 [26] 26 H. Fehske , G. Hager , and E. Jeckelmann , Europhys. Lett. 84 , 57001 ( 2008 ). EULEEJ 0295-5075 10.1209/0295-5075/84/57001 [27] 27 J. Bauer and A. C. Hewson , Phys. Rev. B 81 , 235113 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.81.235113 [28] 28 Y. Murakami , P. Werner , N. Tsuji , and H. Aoki , Phys. Rev. B 88 , 125126 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.125126 [29] 29 E. A. Nowadnick , S. Johnston , B. Moritz , R. T. Scalettar , and T. P. Devereaux , Phys. Rev. Lett. 109 , 246404 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.109.246404 [30] 30 S. Johnston , E. A. Nowadnick , Y. F. Kung , B. Moritz , R. T. Scalettar , and T. P. Devereaux , Phys. Rev. B 87 , 235133 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.235133 [31] 31 Y. Murakami , P. Werner , N. Tsuji , and H. Aoki , Phys. Rev. Lett. 113 , 266404 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.266404 [32] 32 M. Grilli , R. Raimondi , C. Castellani , C. Di Castro , and G. Kotliar , Phys. Rev. Lett. 67 , 259 ( 1991 ). PRLTAO 0031-9007 10.1103/PhysRevLett.67.259 [33] 33 R. Raimondi , C. Castellani , M. Grilli , Y. Bang , and G. Kotliar , Phys. Rev. B 47 , 3331 ( 1993 ). PRBMDO 0163-1829 10.1103/PhysRevB.47.3331 [34] 34 M. C. Gutzwiller , Phys. Rev. Lett. 10 , 159 ( 1963 ). PRLTAO 0031-9007 10.1103/PhysRevLett.10.159 [35] 35 R. Jastrow , Phys. Rev. 98 , 1479 ( 1955 ). PHRVAO 0031-899X 10.1103/PhysRev.98.1479 [36] 36 T. Giamarchi and C. Lhuillier , Phys. Rev. B 43 , 12943 ( 1991 ). PRBMDO 0163-1829 10.1103/PhysRevB.43.12943 [37] 37 J. E. Hirsch , Phys. Rev. B 31 , 4403 ( 1985 ). PRBMDO 0163-1829 10.1103/PhysRevB.31.4403 [38] 38 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.119.197001 for a detailed analysis of the extrapolation of the structure factors to the thermodynamic limit, the superconducting correlation functions at half filling, the physical properties in the antiadiabatic or adiabatic regime, and a possible incommensurate order; this includes Refs. [39–47]. [39] 39 D. A. Huse , Phys. Rev. B 37 , 2380(R) ( 1988 ). PRBMDO 0163-1829 10.1103/PhysRevB.37.2380 [40] 40 D. Hurt , E. Odabashian , W. E. Pickett , R. T. Scalettar , F. Mondaini , T. Paiva , and R. R. dos Santos , Phys. Rev. B 72 , 144513 ( 2005 ). PRBMDO 1098-0121 10.1103/PhysRevB.72.144513 [41] 41 C. N. Varney , C.-R. Lee , Z. J. Bai , S. Chiesa , M. Jarrell , and R. T. Scalettar , Phys. Rev. B 80 , 075116 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.075116 [42] 42 N. Furukawa and M. Imada , J. Phys. Soc. Jpn. 61 , 3331 ( 1992 ). JUPSAU 0031-9015 10.1143/JPSJ.61.3331 [43] 43 A. W. Sandvik , Phys. Rev. B 56 , 11678 ( 1997 ). PRBMDO 0163-1829 10.1103/PhysRevB.56.11678 [44] 44 K. Dichtel , R. J. Jelitto , and H. Koppe , Z. Phys. 246 , 248 ( 1971 ). ZEPYAA 0044-3328 10.1007/BF01395363 [45] 45 H. Shiba , Prog. Theor. Phys. 48 , 2171 ( 1972 ). PTPKAV 0033-068X 10.1143/PTP.48.2171 [46] 46 A. Moreo and D. J. Scalapino , Phys. Rev. Lett. 66 , 946 ( 1991 ). PRLTAO 0031-9007 10.1103/PhysRevLett.66.946 [47] 47 M. Vekić , R. M. Noack , and S. R. White , Phys. Rev. B 46 , 271 ( 1992 ). PRBMDO 0163-1829 10.1103/PhysRevB.46.271 [48] 48 https://github.com/issp-center-dev/mVMC .

PY - 2017/11/8

Y1 - 2017/11/8

N2 - Using a variational Monte Carlo method, we study the competition of strong electron-electron and electron-phonon interactions in the ground state of the Holstein-Hubbard model on a square lattice. At half filling, an extended intermediate metallic or weakly superconducting (SC) phase emerges, sandwiched between antiferromagnetic and charge order (CO) insulating phases. By carrier doping into the CO insulator, the SC order dramatically increases for strong electron-phonon couplings, but is largely hampered by wide phase separation (PS) regions. Superconductivity is optimized at the border to the PS.

AB - Using a variational Monte Carlo method, we study the competition of strong electron-electron and electron-phonon interactions in the ground state of the Holstein-Hubbard model on a square lattice. At half filling, an extended intermediate metallic or weakly superconducting (SC) phase emerges, sandwiched between antiferromagnetic and charge order (CO) insulating phases. By carrier doping into the CO insulator, the SC order dramatically increases for strong electron-phonon couplings, but is largely hampered by wide phase separation (PS) regions. Superconductivity is optimized at the border to the PS.

UR - http://www.scopus.com/inward/record.url?scp=85033572533&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033572533&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.119.197001

DO - 10.1103/PhysRevLett.119.197001

M3 - Article

C2 - 29219494

AN - SCOPUS:85033572533

VL - 119

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 19

M1 - 197001

ER -