Compiler-support for critical data persistence in NVM

Reem Elkhouly, Mohammad Alshboul, Akihiro Hayashi, Yan Solihin, Keiji Kimura

Research output: Contribution to journalArticle

Abstract

Non-volatile Main Memories (NVMs) offer a promising way to preserve data persistence and enable computation recovery in case of failure. While the use of NVMs can significantly reduce the overhead of failure recovery, which is the case with High-Performance Computing (HPC) kernels, rewriting existing programs or writing new applications for NVMs is non-trivial. In this article, we present a compiler-support that automatically inserts complex instructions into kernels to achieve NVM data-persistence based on a simple programmer directive. Unlike checkpointing techniques that store the whole system state, our technique only persists user-designated objects as well as some parameters required for safe recovery such as loop induction variables. Also, our technique can reduce the number of data transfer operations, because our compiler coalesces consecutive memory-persisting operations into a single memory transaction per cache line when possible. Our compiler-support is implemented in the LLVM tool-chain and introduces the necessary modifications to loop-intensive computational kernels (e.g., TMM, LU, Gauss, and FFT) to force data persistence. The experiments show that our proposed compiler-support outperforms the most recent checkpointing techniques while its performance overheads are insignificant.

Original languageEnglish
Article number54
JournalACM Transactions on Architecture and Code Optimization
Volume16
Issue number4
DOIs
Publication statusPublished - 2019 Dec

Keywords

  • Compiler-support
  • Data persistence
  • NVM
  • Valid recovery

ASJC Scopus subject areas

  • Software
  • Information Systems
  • Hardware and Architecture

Fingerprint Dive into the research topics of 'Compiler-support for critical data persistence in NVM'. Together they form a unique fingerprint.

  • Cite this