Computational analysis of wind-turbine blade rain erosion

Alessio Castorrini, Alessandro Corsini, Franco Rispoli, Paolo Venturini, Kenji Takizawa, Tayfun E. Tezduyar

    Research output: Contribution to journalArticle

    43 Citations (Scopus)

    Abstract

    Wind-turbine blade rain erosion damage could be significant if the blades are not protected. This damage would not typically influence the structural integrity of the blades, but it could degrade the aerodynamic performance and therefore the power production. We present computational analysis of rain erosion in wind-turbine blades. The main components of the method used in the analysis are the Streamline-Upwind/Petrov–Galerkin (SUPG) and Pressure-Stabilizing/Petrov–Galerkin (PSPG) stabilizations, a finite element particle-cloud tracking method, and an erosion model. The turbulent-flow nature of the analysis is handled with a RANS model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the computed flow field and closure models defined for the turbulent dispersion of particles, and one-way dependence is assumed between the flow and particle dynamics. The erosion patterns are then computed based on the particle-cloud data. The patterns are consistent with those observed in the actual wind turbines.

    Original languageEnglish
    Pages (from-to)175-183
    Number of pages9
    JournalComputers and Fluids
    Volume141
    DOIs
    Publication statusPublished - 2016 Dec 15

    Keywords

    • Blades
    • PCT model
    • Rain erosion
    • SUPG and PSPG methods
    • Wind turbine

    ASJC Scopus subject areas

    • Computer Science(all)
    • Engineering(all)

    Fingerprint Dive into the research topics of 'Computational analysis of wind-turbine blade rain erosion'. Together they form a unique fingerprint.

  • Cite this