Computations for improving the performance of a new hydrogen-oxygen rocket engine based on supermulti-jets colliding with pulse

Sota Kawaguchi, Remi Konagaya, Kohta Tsuru, Ken Naitoh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have previously proposed a new type of rocket engine that uses the new compressive combustion principle based on supermulti-jets colliding with pulse, which may further improve the thermal efficiency of present rocket engines. In this research, we calculate the flow inside the combustion chamber of our new rocket engine by computation in two cases of injection nozzle distributions, half-sphere and sphere-like. We used the unsteady three-dimensional compressible Navier-Stokes equation, by using a method alike the C-CUP method. Computational results showed that in the sphere-like injection nozzle distribution, combustion efficiency and the pressure of combustion chamber are higher than those in the half-sphere injection nozzle distribution.

Original languageEnglish
Title of host publicationAIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Edition210059
ISBN (Print)9781624105241
DOIs
Publication statusPublished - 2018
EventAIAA Aerospace Sciences Meeting, 2018 - Kissimmee, United States
Duration: 2018 Jan 82018 Jan 12

Publication series

NameAIAA Aerospace Sciences Meeting, 2018
Number210059

Other

OtherAIAA Aerospace Sciences Meeting, 2018
Country/TerritoryUnited States
CityKissimmee
Period18/1/818/1/12

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Computations for improving the performance of a new hydrogen-oxygen rocket engine based on supermulti-jets colliding with pulse'. Together they form a unique fingerprint.

Cite this