Conceptual design of Super FR for MA transmutation with axially heterogeneous core

Takanari Fukuda, Akifumi Yamaji

Research output: Contribution to journalArticle

Abstract

Supercritical water cooled Fast Reactor (Super FR) is featured with the large coolant density reduction by almost 1/10 from the core inlet to the outlet. Since Minor Actinides (MAs) not only have large neutron capture cross sections for thermal neutrons, but also can fission with fast neutrons, MA transmutation performance of Super FR may greatly depend on MA loading positions in the core axial direction of Super FR. However, such investigations have never been conducted. Hence, this study aims to design a Super FR transmutation core concept with the axial configuration of multiple layers of Mixed Oxide (MOX) and blanket fuels, with a focus on the influence of the large axial coolant density change on MA transmutation and core characteristics. With the design criteria of the negative Void Reactivity Coefficient (VRC), the Maximum Cladding Surface Temperature (MCST) < 650 ℃ and the Maximum Linear Heat Generation Rate (MLHGR) < 39 kW/m, three-dimensional neutronics and thermal-hydraulics coupled core burnup calculations have been carried out. Assembly-wise coolant flow rate distribution is determined to attain high core average outlet temperature and the core characteristics of different designs have been evaluated for the equilibrium core after the cores have reached equilibrium states with given fuel shuffling schemes. It has been shown that the MA transmutation amount is limited by deterioration of VRC due to increase of Pu enrichment for compensating the reactivity penalty by MA loading. Moreover, such influence has been found to be more significant in the lower region of the core, where the coolant density is relatively high. Hence, the core design with MA loading to the upper MOX layer is favorable for improving the MA transmutation performance. However, the trade-off relationship between the MA transmutation amount and thermal-hydraulics performance (increase of MLHGR and decrease of average outlet temperature) has been revealed. To overcome the issue, the core radial zoning has been applied and it has been found effective to suppress the trade-off relationship.

Original languageEnglish
Article number110619
JournalNuclear Engineering and Design
Volume363
DOIs
Publication statusPublished - 2020 Jul

Keywords

  • Conceptual core design
  • Minor actinides transmutation
  • Super Fast Reactor (Super FR)
  • SuperCritical light Water cooled Reactor (SCWR)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Safety, Risk, Reliability and Quality
  • Waste Management and Disposal
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Conceptual design of Super FR for MA transmutation with axially heterogeneous core'. Together they form a unique fingerprint.

  • Cite this