### Abstract

We consider certain abelian extensions K, k_{1} of Q(e_{2πi/5}) and show by a method of Shimura that a normal basis of K over k_{1} can be given by special values of Siegel modular functions.

Original language | English |
---|---|

Pages (from-to) | 315-323 |

Number of pages | 9 |

Journal | Proceedings of the American Mathematical Society |

Volume | 128 |

Issue number | 2 |

Publication status | Published - 2000 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)
- Applied Mathematics

### Cite this

*Proceedings of the American Mathematical Society*,

*128*(2), 315-323.

**Construction of a normal basis by special values of siegel modular functions.** / Komatsu, Keiichi.

Research output: Contribution to journal › Article

*Proceedings of the American Mathematical Society*, vol. 128, no. 2, pp. 315-323.

}

TY - JOUR

T1 - Construction of a normal basis by special values of siegel modular functions

AU - Komatsu, Keiichi

PY - 2000

Y1 - 2000

N2 - We consider certain abelian extensions K, k1 of Q(e2πi/5) and show by a method of Shimura that a normal basis of K over k1 can be given by special values of Siegel modular functions.

AB - We consider certain abelian extensions K, k1 of Q(e2πi/5) and show by a method of Shimura that a normal basis of K over k1 can be given by special values of Siegel modular functions.

UR - http://www.scopus.com/inward/record.url?scp=22844455243&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=22844455243&partnerID=8YFLogxK

M3 - Article

VL - 128

SP - 315

EP - 323

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 2

ER -