Contact Conductivity of Uncapped Carbon Nanotubes Formed by Silicon Carbide Decomposition

Masafumi Inaba, Chih Yu Lee, Kazuma Suzuki, Megumi Shibuya, Miho Myodo, Yu Hirano, Wataru Norimatsu, Michiko Kusunoki, Hiroshi Kawarada

    Research output: Contribution to journalArticle

    2 Citations (Scopus)

    Abstract

    Understanding of the contact conductivity of carbon nanotubes (CNTs) will contribute to the further application of CNTs for electronic devices, such as thin film transistors whose channel or electrode is made of dispersed CNTs. In this study, we estimated the contact conductivity of a CNT/CNT interface from the in-plane conductivity of an uncapped CNT forest on SiC. Investigation of the electrical properties of dense CNT forests is also important to enable their electrical application. The in-plane conductivity of a dense CNT forest on silicon carbide normalized by its thickness was measured to be 50 S/cm, which is two to three orders of magnitude lower than the conductivity of a CNT yarn. It was also found that both the CNT cap region and the CNT bulk region exhibit in-plane conductivity. The contact conductivity of CNTs was estimated from the in-plane conductivity in the bulk region. Dense and uncapped CNT forest can be approximated by a conductive mesh, in which each conductive branch corresponds to the CNT/CNT contact conductance. The evaluated contact conductivity was in good agreement with that calculated from the tunneling effect.

    Original languageEnglish
    Pages (from-to)6232-6238
    Number of pages7
    JournalJournal of Physical Chemistry C
    Volume120
    Issue number11
    DOIs
    Publication statusPublished - 2016 Mar 24

      Fingerprint

    ASJC Scopus subject areas

    • Physical and Theoretical Chemistry
    • Electronic, Optical and Magnetic Materials
    • Surfaces, Coatings and Films
    • Energy(all)

    Cite this

    Inaba, M., Lee, C. Y., Suzuki, K., Shibuya, M., Myodo, M., Hirano, Y., Norimatsu, W., Kusunoki, M., & Kawarada, H. (2016). Contact Conductivity of Uncapped Carbon Nanotubes Formed by Silicon Carbide Decomposition. Journal of Physical Chemistry C, 120(11), 6232-6238. https://doi.org/10.1021/acs.jpcc.5b11815