Abstract
In quadrupeds, an electrically induced, moderate to high intensity brief muscle contraction potentiates autogenetic excitation and leads to enhanced recruitment and/or tonic firing frequency of α-motor neurons. To determine if similar adaptations occur in humans, single motor units (SMUs) and surface electromyographic activity (EMG) were recorded from the right biceps brachii before and immediately after a 5-s 25% or 50% maximum voluntary contraction (MVC), while subjects held a handle (0-1% MVC) attached to a force transducer or maintained a 2% MVC for 30-60 s. Of 26 SMUs recorded, 15 increased, 4 decreased, and 7 showed no change in firing frequency (mean increase: 5 imp/s, P < 0.01). Twelve SMUs had lower recruitment force thresholds after contraction. There was no significant treatment effect for the % MVC intensity. The postcontraction surface EMG power spectrum broadened, increased in amplitude, and contained a higher frequency component than the control contraction power spectrum. Changes in recruitment and/or frequency coding were reflected in the raw EMG records. Findings agree with previous reports in animals of contraction-induced potentiation of subsequent submaximal muscle contractions. Such acute adaptations in spinal neuromuscular pathways would function to optimize force output to a submaximal range of neural input frequencies.
Original language | English |
---|---|
Pages (from-to) | 391-395 |
Number of pages | 5 |
Journal | Medicine and Science in Sports and Exercise |
Volume | 20 |
Issue number | 4 |
Publication status | Published - 1988 |
Externally published | Yes |
ASJC Scopus subject areas
- Orthopedics and Sports Medicine
- Public Health, Environmental and Occupational Health
- Physical Therapy, Sports Therapy and Rehabilitation