Cores of partitioning games

Mamoru Kaneko*, Myrna Holtz Wooders

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

99 Citations (Scopus)

Abstract

A generalization of assignment games, called partitioning games, is introduced. Given a finite set N of players, there is an a priori given set π of coalitions of N and only coalitions in π play an essential role. Necessary and sufficient conditions for the nonemptiness of the cores of all games with essential coalitions π are developed. These conditions appear extremely restrictive. However when N is 'large', there are relatively few 'types' of players, and members of π are 'small' and defined in terms of numbers of players of each type contained in subsets, then approximate cores are nonempty.

Original languageEnglish
Pages (from-to)313-327
Number of pages15
JournalMathematical Social Sciences
Volume3
Issue number4
DOIs
Publication statusPublished - 1982
Externally publishedYes

Keywords

  • approximate core
  • Assignment game
  • nonempty core
  • partitioning game
  • replication

ASJC Scopus subject areas

  • Statistics, Probability and Uncertainty
  • Economics and Econometrics

Fingerprint

Dive into the research topics of 'Cores of partitioning games'. Together they form a unique fingerprint.

Cite this