Correction: Photoluminescence Mechanism in Heavily Si-Doped GaAsN (Crystal Research and Technology, (2021), 56, 3, (2000143), 10.1002/crat.202000143)

Takashi Tsukasaki*, Ren Hiyoshi, Miki Fujita, Toshiki Makimoto

*Corresponding author for this work

Research output: Contribution to journalComment/debatepeer-review

Abstract

In the originally published article, the following values were presented incorrectly: 1) The values of the Si impurity concentration ([Si]) and the electron concentration (n) are slightly erroneous for the heavily Si-doped GaAsN, which are described as 6 × 1019 cm–3 and 9 × 1018 cm–3, respectively. The correct values of them are 2 × 1019 cm–3 and 6 × 1018 cm–3, respectively. Figure 1 and 2 with the correct values are presented below. 2) The value of n is applied for the evaluation of electron effective mass (me*) in the paper. The correct values of the decreased energy of the bandgap narrowing (ΔEBGN) and the increased energy of the Burstein-Moss effect (Efn) are 120 meV and 140 meV instead of 140 meV and 160 meV, respectively. Consequently, for the heavily Si-doped GaAsN, the correct value of me* is 0.11m0 instead of 0.098m0, where m0 is the electron mass. Figure 2 with the correct value is presented below. 1 Figure (Figure presented.) PL spectra of heavily Si-doped GaAsN with [Si] of 2 × 1019 cm−3 and [N] of 0.6% as a function of temperature. Black arrows indicate PL peak energy on each PL spectrum. 2 Figure (Figure presented.) Temperature dependence of PL peak energy for heavily Si-doped GaAsN with [Si] of 2 × 1019 cm−3 and [N] of 0.6% and moderately Si-doped GaAsN with [Si] of 1 × 1018 cm−3 and [N] of 0.7%. The authors state that these errors do not change the scientific conclusions of the paper in any way and apologize for any confusion this may have caused.

Original languageEnglish
Article number2100204
JournalCrystal Research and Technology
Volume56
Issue number11
DOIs
Publication statusPublished - 2021 Nov
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Correction: Photoluminescence Mechanism in Heavily Si-Doped GaAsN (Crystal Research and Technology, (2021), 56, 3, (2000143), 10.1002/crat.202000143)'. Together they form a unique fingerprint.

Cite this