Correlation among clock gene expression rhythms, sleep quality, and meal conditions in delayed sleep-wake phase disorder and night eating syndrome

Atsushi Haraguchi, Yoko Komada, Yuichi Inoue, Shigenobu Shibata

Research output: Contribution to journalArticle

Abstract

Clock genes that comprise the circadian clock system control various physiological functions. Delayed sleep-wake phase disorder (DSWPD) and night eating syndrome (NES) are characterized by delayed sleep and meal timing, respectively. We estimated that clock gene expression rhythms in DSWPD patients may be delayed in comparison with the healthy subjects due to delayed melatonin secretion rhythms, producing eveningness chronotype in these individuals. However, it was difficult to estimate which clock gene expression rhythms were delayed or not in NES patients, because previous studies revealed that melatonin secretion rhythm was a little delayed compared with healthy individuals and that chronotype of NES patients depended on the individuals. Therefore, we examined expression rhythms of clock genes such as Period3 (Per3), nuclear receptor subfamily 1, group D, member 1 (Nr1d1) and Nr1d2 in these patients. Further, we expected sleep and meal patterns in DSWPD and NES patients may be more diverse than patterns observed in healthy subjects, and thus analyzed relationships among clock gene expression rhythms, sleep quality, sleep midpoint time, and meal times. We enrolled healthy male participants along with DSWPD and NES male patients, and asked all participants to answer questionnaires and to keep diaries to record information on their sleep and meals. Further, we asked them to collect 5–10 beard follicle samples, 6 times every 4 h. We measured clock gene expression rhythms using total RNA extracted from beard follicle cells. Peak time of clock gene expression in the NES group showed more diversity than the other groups, and that in the DSWPD group was delayed compared with the control group. In addition, the peak time of clock gene expression was negatively correlated with sleep quality and positively correlated with meal time after a long fast. Amplitudes of clock gene expression, especially Per3, positively responded to better mental and physical conditions as well as with better sleep quality. Results of this study suggest that peak times of clock gene expression in NES patients depended on the individuals; some patients with NES showed similar clock gene expression rhythm to healthy subjects, and other patients with NES showed similar to DSWPD patients. Moreover, this study suggests that meal time after a long fast may influence more determination in clock gene expression rhythms than the time of breakfast. Therefore, this study also indicates that Per3 clock gene may be one of the parameters that will help us understand sleep and meal rhythm disturbances.

Original languageEnglish
JournalChronobiology International
DOIs
Publication statusPublished - 2019 Jan 1

Fingerprint

Meals
Sleep
Eating
Gene Expression
Healthy Volunteers
Melatonin
Nuclear Receptor Subfamily 1, Group D, Member 1
Sleep Wake Disorders
Genes
Circadian Clocks
Breakfast
RNA
Control Groups

Keywords

  • Clock gene expression rhythm
  • delayed sleep-wake phase disorder
  • meal time after a long fast
  • night eating syndrome
  • sleep midpoint time
  • sleep quality

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

@article{688ad92d578c443492391102be7bff50,
title = "Correlation among clock gene expression rhythms, sleep quality, and meal conditions in delayed sleep-wake phase disorder and night eating syndrome",
abstract = "Clock genes that comprise the circadian clock system control various physiological functions. Delayed sleep-wake phase disorder (DSWPD) and night eating syndrome (NES) are characterized by delayed sleep and meal timing, respectively. We estimated that clock gene expression rhythms in DSWPD patients may be delayed in comparison with the healthy subjects due to delayed melatonin secretion rhythms, producing eveningness chronotype in these individuals. However, it was difficult to estimate which clock gene expression rhythms were delayed or not in NES patients, because previous studies revealed that melatonin secretion rhythm was a little delayed compared with healthy individuals and that chronotype of NES patients depended on the individuals. Therefore, we examined expression rhythms of clock genes such as Period3 (Per3), nuclear receptor subfamily 1, group D, member 1 (Nr1d1) and Nr1d2 in these patients. Further, we expected sleep and meal patterns in DSWPD and NES patients may be more diverse than patterns observed in healthy subjects, and thus analyzed relationships among clock gene expression rhythms, sleep quality, sleep midpoint time, and meal times. We enrolled healthy male participants along with DSWPD and NES male patients, and asked all participants to answer questionnaires and to keep diaries to record information on their sleep and meals. Further, we asked them to collect 5–10 beard follicle samples, 6 times every 4 h. We measured clock gene expression rhythms using total RNA extracted from beard follicle cells. Peak time of clock gene expression in the NES group showed more diversity than the other groups, and that in the DSWPD group was delayed compared with the control group. In addition, the peak time of clock gene expression was negatively correlated with sleep quality and positively correlated with meal time after a long fast. Amplitudes of clock gene expression, especially Per3, positively responded to better mental and physical conditions as well as with better sleep quality. Results of this study suggest that peak times of clock gene expression in NES patients depended on the individuals; some patients with NES showed similar clock gene expression rhythm to healthy subjects, and other patients with NES showed similar to DSWPD patients. Moreover, this study suggests that meal time after a long fast may influence more determination in clock gene expression rhythms than the time of breakfast. Therefore, this study also indicates that Per3 clock gene may be one of the parameters that will help us understand sleep and meal rhythm disturbances.",
keywords = "Clock gene expression rhythm, delayed sleep-wake phase disorder, meal time after a long fast, night eating syndrome, sleep midpoint time, sleep quality",
author = "Atsushi Haraguchi and Yoko Komada and Yuichi Inoue and Shigenobu Shibata",
year = "2019",
month = "1",
day = "1",
doi = "10.1080/07420528.2019.1585366",
language = "English",
journal = "Annual Review of Chronopharmacology",
issn = "0743-9539",
publisher = "Marcel Dekker Inc.",

}

TY - JOUR

T1 - Correlation among clock gene expression rhythms, sleep quality, and meal conditions in delayed sleep-wake phase disorder and night eating syndrome

AU - Haraguchi, Atsushi

AU - Komada, Yoko

AU - Inoue, Yuichi

AU - Shibata, Shigenobu

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Clock genes that comprise the circadian clock system control various physiological functions. Delayed sleep-wake phase disorder (DSWPD) and night eating syndrome (NES) are characterized by delayed sleep and meal timing, respectively. We estimated that clock gene expression rhythms in DSWPD patients may be delayed in comparison with the healthy subjects due to delayed melatonin secretion rhythms, producing eveningness chronotype in these individuals. However, it was difficult to estimate which clock gene expression rhythms were delayed or not in NES patients, because previous studies revealed that melatonin secretion rhythm was a little delayed compared with healthy individuals and that chronotype of NES patients depended on the individuals. Therefore, we examined expression rhythms of clock genes such as Period3 (Per3), nuclear receptor subfamily 1, group D, member 1 (Nr1d1) and Nr1d2 in these patients. Further, we expected sleep and meal patterns in DSWPD and NES patients may be more diverse than patterns observed in healthy subjects, and thus analyzed relationships among clock gene expression rhythms, sleep quality, sleep midpoint time, and meal times. We enrolled healthy male participants along with DSWPD and NES male patients, and asked all participants to answer questionnaires and to keep diaries to record information on their sleep and meals. Further, we asked them to collect 5–10 beard follicle samples, 6 times every 4 h. We measured clock gene expression rhythms using total RNA extracted from beard follicle cells. Peak time of clock gene expression in the NES group showed more diversity than the other groups, and that in the DSWPD group was delayed compared with the control group. In addition, the peak time of clock gene expression was negatively correlated with sleep quality and positively correlated with meal time after a long fast. Amplitudes of clock gene expression, especially Per3, positively responded to better mental and physical conditions as well as with better sleep quality. Results of this study suggest that peak times of clock gene expression in NES patients depended on the individuals; some patients with NES showed similar clock gene expression rhythm to healthy subjects, and other patients with NES showed similar to DSWPD patients. Moreover, this study suggests that meal time after a long fast may influence more determination in clock gene expression rhythms than the time of breakfast. Therefore, this study also indicates that Per3 clock gene may be one of the parameters that will help us understand sleep and meal rhythm disturbances.

AB - Clock genes that comprise the circadian clock system control various physiological functions. Delayed sleep-wake phase disorder (DSWPD) and night eating syndrome (NES) are characterized by delayed sleep and meal timing, respectively. We estimated that clock gene expression rhythms in DSWPD patients may be delayed in comparison with the healthy subjects due to delayed melatonin secretion rhythms, producing eveningness chronotype in these individuals. However, it was difficult to estimate which clock gene expression rhythms were delayed or not in NES patients, because previous studies revealed that melatonin secretion rhythm was a little delayed compared with healthy individuals and that chronotype of NES patients depended on the individuals. Therefore, we examined expression rhythms of clock genes such as Period3 (Per3), nuclear receptor subfamily 1, group D, member 1 (Nr1d1) and Nr1d2 in these patients. Further, we expected sleep and meal patterns in DSWPD and NES patients may be more diverse than patterns observed in healthy subjects, and thus analyzed relationships among clock gene expression rhythms, sleep quality, sleep midpoint time, and meal times. We enrolled healthy male participants along with DSWPD and NES male patients, and asked all participants to answer questionnaires and to keep diaries to record information on their sleep and meals. Further, we asked them to collect 5–10 beard follicle samples, 6 times every 4 h. We measured clock gene expression rhythms using total RNA extracted from beard follicle cells. Peak time of clock gene expression in the NES group showed more diversity than the other groups, and that in the DSWPD group was delayed compared with the control group. In addition, the peak time of clock gene expression was negatively correlated with sleep quality and positively correlated with meal time after a long fast. Amplitudes of clock gene expression, especially Per3, positively responded to better mental and physical conditions as well as with better sleep quality. Results of this study suggest that peak times of clock gene expression in NES patients depended on the individuals; some patients with NES showed similar clock gene expression rhythm to healthy subjects, and other patients with NES showed similar to DSWPD patients. Moreover, this study suggests that meal time after a long fast may influence more determination in clock gene expression rhythms than the time of breakfast. Therefore, this study also indicates that Per3 clock gene may be one of the parameters that will help us understand sleep and meal rhythm disturbances.

KW - Clock gene expression rhythm

KW - delayed sleep-wake phase disorder

KW - meal time after a long fast

KW - night eating syndrome

KW - sleep midpoint time

KW - sleep quality

UR - http://www.scopus.com/inward/record.url?scp=85063650877&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063650877&partnerID=8YFLogxK

U2 - 10.1080/07420528.2019.1585366

DO - 10.1080/07420528.2019.1585366

M3 - Article

JO - Annual Review of Chronopharmacology

JF - Annual Review of Chronopharmacology

SN - 0743-9539

ER -