Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles

Kei Yura, Mitiko Go

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Background. In plant organelles, specific messenger RNAs (mRNAs) are subjected to conversion editing, a process that often converts the first or second nucleotide of a codon and hence the encoded amino acid. No systematic patterns in converted sites were found on mRNAs, and the converted sites rarely encoded residues located at the active sites of proteins. The role and origin of RNA editing in plant organelles remain to be elucidated. Results. Here we study the relationship between amino acid residues encoded by edited codons and the structural characteristics of these residues within proteins, e.g., in protein-protein interfaces, elements of secondary structure, or protein structural cores. We find that the residues encoded by edited codons are significantly biased toward involvement in helices and protein structural cores. RNA editing can convert codons for hydrophilic to hydrophobic amino acids. Hence, only the edited form of an mRNA can be translated into a polypeptide with helix-preferring and core-forming residues at the appropriate positions, which is often required for a protein to form a functional three-dimensional (3D) structure. Conclusion. We have performed a novel analysis of the location of residues affected by RNA editing in proteins in plant organelles. This study documents that RNA editing sites are often found in positions important for 3D structure formation. Without RNA editing, protein folding will not occur properly, thus affecting gene expression. We suggest that RNA editing may have conferring evolutionary advantage by acting as a mechanism to reduce susceptibility to DNA damage by allowing the increase in GC content in DNA while maintaining RNA codons essential to encode residues required for protein folding and activity.

Original languageEnglish
Article number79
JournalBMC Plant Biology
Volume8
DOIs
Publication statusPublished - 2008
Externally publishedYes

Fingerprint

RNA Editing
RNA editing
Plant Structures
Organelles
organelles
codons
Codon
Amino Acids
amino acids
messenger RNA
Proteins
protein folding
proteins
structural proteins
Protein Folding
Messenger RNA
Secondary Protein Structure
Plant Proteins
Base Composition
plant proteins

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{51b156b93140406caa18d168b9d282ea,
title = "Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles",
abstract = "Background. In plant organelles, specific messenger RNAs (mRNAs) are subjected to conversion editing, a process that often converts the first or second nucleotide of a codon and hence the encoded amino acid. No systematic patterns in converted sites were found on mRNAs, and the converted sites rarely encoded residues located at the active sites of proteins. The role and origin of RNA editing in plant organelles remain to be elucidated. Results. Here we study the relationship between amino acid residues encoded by edited codons and the structural characteristics of these residues within proteins, e.g., in protein-protein interfaces, elements of secondary structure, or protein structural cores. We find that the residues encoded by edited codons are significantly biased toward involvement in helices and protein structural cores. RNA editing can convert codons for hydrophilic to hydrophobic amino acids. Hence, only the edited form of an mRNA can be translated into a polypeptide with helix-preferring and core-forming residues at the appropriate positions, which is often required for a protein to form a functional three-dimensional (3D) structure. Conclusion. We have performed a novel analysis of the location of residues affected by RNA editing in proteins in plant organelles. This study documents that RNA editing sites are often found in positions important for 3D structure formation. Without RNA editing, protein folding will not occur properly, thus affecting gene expression. We suggest that RNA editing may have conferring evolutionary advantage by acting as a mechanism to reduce susceptibility to DNA damage by allowing the increase in GC content in DNA while maintaining RNA codons essential to encode residues required for protein folding and activity.",
author = "Kei Yura and Mitiko Go",
year = "2008",
doi = "10.1186/1471-2229-8-79",
language = "English",
volume = "8",
journal = "BMC Plant Biology",
issn = "1471-2229",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles

AU - Yura, Kei

AU - Go, Mitiko

PY - 2008

Y1 - 2008

N2 - Background. In plant organelles, specific messenger RNAs (mRNAs) are subjected to conversion editing, a process that often converts the first or second nucleotide of a codon and hence the encoded amino acid. No systematic patterns in converted sites were found on mRNAs, and the converted sites rarely encoded residues located at the active sites of proteins. The role and origin of RNA editing in plant organelles remain to be elucidated. Results. Here we study the relationship between amino acid residues encoded by edited codons and the structural characteristics of these residues within proteins, e.g., in protein-protein interfaces, elements of secondary structure, or protein structural cores. We find that the residues encoded by edited codons are significantly biased toward involvement in helices and protein structural cores. RNA editing can convert codons for hydrophilic to hydrophobic amino acids. Hence, only the edited form of an mRNA can be translated into a polypeptide with helix-preferring and core-forming residues at the appropriate positions, which is often required for a protein to form a functional three-dimensional (3D) structure. Conclusion. We have performed a novel analysis of the location of residues affected by RNA editing in proteins in plant organelles. This study documents that RNA editing sites are often found in positions important for 3D structure formation. Without RNA editing, protein folding will not occur properly, thus affecting gene expression. We suggest that RNA editing may have conferring evolutionary advantage by acting as a mechanism to reduce susceptibility to DNA damage by allowing the increase in GC content in DNA while maintaining RNA codons essential to encode residues required for protein folding and activity.

AB - Background. In plant organelles, specific messenger RNAs (mRNAs) are subjected to conversion editing, a process that often converts the first or second nucleotide of a codon and hence the encoded amino acid. No systematic patterns in converted sites were found on mRNAs, and the converted sites rarely encoded residues located at the active sites of proteins. The role and origin of RNA editing in plant organelles remain to be elucidated. Results. Here we study the relationship between amino acid residues encoded by edited codons and the structural characteristics of these residues within proteins, e.g., in protein-protein interfaces, elements of secondary structure, or protein structural cores. We find that the residues encoded by edited codons are significantly biased toward involvement in helices and protein structural cores. RNA editing can convert codons for hydrophilic to hydrophobic amino acids. Hence, only the edited form of an mRNA can be translated into a polypeptide with helix-preferring and core-forming residues at the appropriate positions, which is often required for a protein to form a functional three-dimensional (3D) structure. Conclusion. We have performed a novel analysis of the location of residues affected by RNA editing in proteins in plant organelles. This study documents that RNA editing sites are often found in positions important for 3D structure formation. Without RNA editing, protein folding will not occur properly, thus affecting gene expression. We suggest that RNA editing may have conferring evolutionary advantage by acting as a mechanism to reduce susceptibility to DNA damage by allowing the increase in GC content in DNA while maintaining RNA codons essential to encode residues required for protein folding and activity.

UR - http://www.scopus.com/inward/record.url?scp=48849111306&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48849111306&partnerID=8YFLogxK

U2 - 10.1186/1471-2229-8-79

DO - 10.1186/1471-2229-8-79

M3 - Article

VL - 8

JO - BMC Plant Biology

JF - BMC Plant Biology

SN - 1471-2229

M1 - 79

ER -