Cosmology in generalized Horndeski theories with second-order equations of motion

Ryotaro Kase, Shinji Tsujikawa

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

We study the cosmology of an extended version of Horndeski theories with second-order equations of motion on the flat Friedmann-Lemaître-Robertson- Walker background. In addition to a dark energy field χ associated with the gravitational sector, we take into account multiple scalar fields φI (I=1,2,...,N-1) characterized by the Lagrangians P(I)(XI) with XI=∂μφI∂μφI. These additional scalar fields can model the perfect fluids of radiation and nonrelativistic matter. We derive propagation speeds of scalar and tensor perturbations as well as conditions for the absence of ghosts. The theories beyond Horndeski induce nontrivial modifications to all the propagation speeds of N scalar fields, but the modifications to those for the matter fields φI are generally suppressed relative to that for the dark energy field χ. We apply our results to the covariantized Galileon with an Einstein-Hilbert term in which partial derivatives of the Minkowski Galileon are replaced by covariant derivatives. Unlike the covariant Galileon with second-order equations of motion in general space-time, the scalar propagation speed square cs12 associated with the field χ becomes negative during the matter era for late-time tracking solutions, so the two Galileon theories can be clearly distinguished at the level of linear cosmological perturbations.

Original languageEnglish
Article number044073
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume90
Issue number4
DOIs
Publication statusPublished - 2014 Aug 28

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Cosmology in generalized Horndeski theories with second-order equations of motion'. Together they form a unique fingerprint.

  • Cite this