Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries

Benoit Mortemard de Boisse, Marine Reynaud, Jiangtao Ma, Jun Kikkawa, Shin ichi Nishimura, Montse Casas-Cabanas, Claude Delmas, Masashi Okubo, Atsuo Yamada*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

Lithium- and sodium-rich layered transition-metal oxides have recently been attracting significant interest because of their large capacity achieved by additional oxygen-redox reactions. However, layered transition-metal oxides exhibit structural degradation such as cation migration, layer exfoliation or cracks upon deep charge, which is a major obstacle to achieve higher energy-density batteries. Here we demonstrate a self-repairing phenomenon of stacking faults upon desodiation from an oxygen-redox layered oxide Na2RuO3, realizing much better reversibility of the electrode reaction. The phase transformations upon charging A2MO3 (A: alkali metal) can be dominated by three-dimensional Coulombic attractive interactions driven by the existence of ordered alkali-metal vacancies, leading to counterintuitive self-repairing of stacking faults and progressive ordering upon charging. The cooperatively ordered vacancy in lithium-/sodium-rich layered transition-metal oxides is shown to play an essential role, not only in generating the electro-active nonbonding 2p orbital of neighbouring oxygen but also in stabilizing the phase transformation for highly reversible oxygen-redox reactions.

Original languageEnglish
Article number2185
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries'. Together they form a unique fingerprint.

Cite this